[1] Barenblatt, G. J., Zheltov, I. P. and Kochina, I. N. (1960). "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks." J. Appl. Math. Mech., Vol. 24, pp. 1286-1303.
[2] Warren, J.E. and Root, P.J. (1963). The Behavior of Naturally Fractured Reservoirs, SPE Journal, (Sept.1963), 245-255.
[3] Kazemi, H., Merrill, L.S., Porterfield, K.L. and Zeman, P.R. (1976). Numerical Simulation of Water-Oil Flow in Naturally Fractured Reservoirs, SPE Journal, 317-326.
[4] Coats, K.H. (1989). Implicit Compositional Simulation of Single-Porosity and Dual-Porosity Reservoirs. SPE paper 18427.
[5] Quintard, M. and Whitaker, S. (1996). "Theoretical development of region-averaged equations for slightly compressible single-phase flow." Adv. Water Res., Vol. 19(1), pp. 29-47.
[6] Zimmerman, R.W., Chen, G., Hadgu, T. and Bodvarsson, G.S. (1993). "A numerical dual-porosity model with semi-analytical treatment of fracture/matrix flow." Wat. Resour. Res., Vol. 29(7), pp. 2127-2137.
[7] Mathias, S.A. and Zimmerman, R.W. (2003). Laplace transform inversion for late-time behavior of groundwater flow problems. Water Resources Research, 39(10): paper 1283.
[8] Kazemi, H., Gilman, J.R. and Elsharkawy, A.M. (1992). Analytical and Numerical Solution of Oil Recovery from Fractured Reservoirs Using Empirical Transfer Functions, SPE Reservoir Engineering, May 1992, 219-227
[9] Heinemann, Z.E. and Mittermeir, G.M. (2012). "Derivation of the Kazemi-Gilman-Elsharkawy generalized dual porosity shape factor." Transp. Porous Med., Vol. 91(1), pp. 123-132.
[10] de Swaan, A. (1976). Analytic Solutions for Determining Naturally Fracture Reservoir Properties by Well Testing. SPE Paper, 5346-PA.
[11] de Swaan, A. (1990). Influence of Shape and Skin of Matrix-Rock Blocks on Pressure Transients in Fractured Reservoirs. SPE Formation Evaluation, Dec. 1990, 344-352.
[12] Sarma, P. and Aziz, K. (2006). Production Optimization With Adjoint Models Under Nonlinear ControlState Path Inequality Constraints. SPE Paper, 99959-MS.
[13] Lim, KT. And Aziz, K. (1995). "Matrix-fracture transfer shape factors for dual-porosity simulators." J. Pet. Sci. Eng, Vol. 13, pp. 169-178.
[14] Schlumberger, (2012). ECLIPSE reservoir simulation software – Technical Description Version 2012.1.
[15] Barker, J.A. (1985). "Block-geometry functions characterizing transport in densely fissured media." J. Hydrol., Vol. 77, pp. 263-279.
[16] Dunham, W. (1990). Heron's Formula for Triangular Area. Ch. 5 in Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 113-132.
[17] Wolfram Math World, http://mathworld.wolfram.com/Point-PlaneDistance.html
[18] Lishman, J.R. (1970). Core Permeability Anisotropy, J. Canadian Pet. Tech., 9(2).
[19] Mousatov, A., Pervago, E. and Shevnin, V. (2000). A New Approach to Resistivity Anisotropy Measurements, SEG 2000 Expanded Abstracts, 2000-1381.
[20] Durlofsky, L.J. (1991). "Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media." Wat. Resou. Res., Vol. 27(5), pp. 699-708.
[21] Rose, W. (1982). "A new method to measure directional permeability." J. Petrol. Technol., May 1982. 22- Walter D., R. (1982). "A new method to measure directional permeability." J. Petrol. Eng., Vol. 34(5), pp. 1142-1144.
[23] Weitzenböck, J.R., Shenoi, R.A. and Wilson, P.A. (1997). "Measurement of three-dimensional permeability." Appl. Sci. Manuf., Vol. 29, pp. 159-169.
[24] Asadi, M., Ghalambor, A., Rose, W.D. and Shirazi, M. K. (2000). Anisotropic Permeability Measurement of Porous Media: A 3-Dimensional Method. SPE Conference Paper, 59396.
[25] Onsager, L. (1931). "Reciprocal relations in irreversible processes." Phys. Rev. Vol. 37, pp. 405-426.
[26] Anton, H. and Rorres, C. (2000). Elementary Linear Algebra (Applications Version) 8th edition, John Wiley & Sons. ISBN 978-0-471-17052-5.
[27] Muskat, M. (1937). The flow of homogeneous fluids through porous media, Mc Graw Hill Book Company Inc., NY, USA, 137-148.
[28] Creative Dimension Software Ltd – 3D Software Modeller Pro.