[1] Augustine, “Spent tea waste as a biomass for co-gasification enhances the performance of semi-industrial gasifier working on groundnut shell,” Biomass and Bioenergy, vol. 145, p. 105964, 2021.
https://doi.org/10.1016/j.biombioe.2021.105964.
[2] Y. Chen et al., "Tea consumption and risk of lower respiratory tract infections: a two-sample mendelian randomization study," pp. 385–393, 2023, doi: 10.1007/s00394-022- 02994-w.
doi: 10.1007/s00394-022-02994-w.
[3] B. Tunklová, L. Jeníček, J. Malaťák, M. Neškudla, J. Velebil, and F. Hnilička, “Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications,” Materials (Basel)., vol. 15, no. 24, 2022,
doi: 10.3390/ma15248709. https://doi.org/10.3390/ma15248709.
[4] H. Hamed, A. Mohammed, R. Khalefa, O. HABEEB, and mahmod abdulqader, “The Effect of using Compound Techniques (Passive and Active) on the Double Pipe Heat Exchanger Performance,” Egypt. J. Chem., vol. 0, no. 0, pp. 0–0, 2021, doi: 10.21608/ejchem.2021.54450.3134.
https://doi.org/10.21608/ejchem.2021.54450.3134.
[6] Ş. Taşar, “Thermal conversion behavior of cellulose and hemicellulose fractions isolated from tea leaf brewing waste: kinetic and thermodynamic evaluation,” Biomass Convers. Biorefinery, pp. 1–13, 2022.
https://doi.org/10.1007/s13399-021-01697-2.
[7] S. Guo, M. Kumar Awasthi, Y. Wang, and P. Xu, “Current understanding in conversion and application of tea waste biomass: A review,” Bioresour. Technol., vol. 338, no. July, p. 125530, 2021, doi: 10.1016/j.biortech.2021.125530.
doi: 10.1016/j.biortech.2021.125530.
[8] P. Duarah, D. Haldar, R. R. Singhania, C.-D. Dong, A. K. Patel, and M. K. Purkait, “Sustainable management of tea wastes: resource recovery and conversion techniques,” Crit. Rev. Biotechnol., vol. 44, no. 2, pp. 255–274, 2024.
https://doi.org/10.1080/07388551.2022.2157701.
[9] N. Ghavami, K. Özdenkçi, and C. De Blasio, “Process simulation of co-HTC of sewage sludge and food waste digestates and supercritical water gasification of aqueous effluent integrated with biogas plants,” Energy, vol. 291, p. 130221, 2024.
https://doi.org/10.1016/j.energy.2023.130221.
[11] M. I. Fathi, M. A. Abdulqader, and O. A. Habeeb, “Microwave process of oily sludge produced at NRC Baiji to micro-char solid carbon production,” Desalin. WATER Treat., vol. 310, pp. 142–149, 2023.
https://doi.org/10.5004/dwt.2023.29935.
[12] M. Cavali, N. L. Junior, R. de Almeida Mohedano, P. Belli Filho, R. H. R. da Costa, and A. B. de Castilhos Junior, “Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview,” Sci. Total Environ., vol. 822, p. 153614, 2022.
https://doi.org/10.1016/j.scitotenv.2022.153614.
[13] S. Wang, H. Persson, W. Yang, and P. G. Jönsson, “Pyrolysis study of hydrothermal carbonization-treated digested sewage sludge using a Py-GC/MS and a bench-scale pyrolyzer,” Fuel, vol. 262, no. September 2019, p. 116335, 2020, doi: 10.1016/j.fuel.2019.116335.
doi: 10.1016/j.fuel.2019.116335.
[14] H. Y. Salih, O. A. Habeeb, S. E. M. Saber, and A. A. Jasem, “Clean char solid carbon fuel production via microwave processes of oily sludge produced at North Refineries Company Baiji,” 2023.
https://doi.org/10.1063/5.0172519.
[15] mahmod abdulqader, S. Syed Hassan, A. Jawad, and O. HABEEB, “Characterization Study of Petroleum Oily Sludge Produced from North Refineries Company Baiji to Determine the Suitability for Conversion into Solid Fuel,” Egypt. J. Chem., vol. 0, no. 0, pp. 0–0, 2021, doi: 10.21608/ejchem.2021.54222.3126.
doi: 10.21608/ejchem.2021.54222.3126.
[16] H. Hamed, A. Mohammed, O. HABEEB, O. Ali, O. Aljaf, and M. Abdulqader, “Biodiesel Production From Waste Cooking Oil using Homogeneous Catalyst,” Egypt. J. Chem., vol. 0, no. 0, pp. 0–0, 2021, doi: 10.21608/ejchem.2021.62395.3339.
doi: 10.21608/ejchem.2021.62395.3339.
[17] M. A. Abdulqader et al., “Solid Fuel Char Production via Pyrolysis Process of Oily Sludge Produced as a Resulted in Storage Tanks at North Refineries Company Baiji,” J. Pet. Res. Stud., vol. 12, no. 1 (Suppl.), pp. 199–210, 2022.
https://doi.org/10.52716/jprs.v12i1(Suppl.).631.
[18] M. M. Ibrahim, M. A. Abdulqader, and W. M. S. Alabdraba, “Physicochemical property of hydrochar produced by hydrothermal carbonization of waste oily sludge,” in AIP Conference Proceedings, AIP Publishing, 2024.
https://doi.org/10.1063/5.0237186.
[19] A. S. for T. and M. ASTM, “ASTM D1102-84. Standard Test Method for Ash in Wood,” ASTM Int., vol. 84, no. Reapproved, p. 2, 2013, doi: 10.1520/D1102-84R13.1.
[20] ASTM, “Standard Test Methods for Analysis of Wood Fuels E870 - 82,” ASTM Int., vol. 82, no. Reapproved 2006, pp. 1–2, 2011,
doi: 10.1520/E0870-82R06.2.
[21] A. L. Pauline and K. Joseph, “Hydrothermal carbonization of oily sludge for solid fuel recovery–investigation of chemical chaPauline, A. L., & Joseph, K. (2021). Hydrothermal carbonization of oily sludge for solid fuel recovery–investigation of chemical characteristics and combustion ,” J. Anal. Appl. Pyrolysis, vol. 157, p. 105235, 2021.
https://doi.org/10.1016/j.jaap.2021.105235.
[22] M. A. Abdulqader et al., “Conversion of Chicken Rice Waste into Char via Hydrothermal, Pyrolysis, and Microwave Carbonization Processes: A Comparative Study,” AUIQ Complement. Biol. Syst., vol. 1, no. 1, pp. 1–9, 2024.
https://doi.org/10.70176/3007-973X.1003.
[23] M. Santos Santana, R. Pereira Alves, W. M. da Silva Borges, E. Francisquini, and M. C. Guerreiro, “Hydrochar production from defective coffee beans by hydrothermal carbonization,” Bioresour. Technol., vol. 300, no. September 2019, p. 122653, 2020,
doi: 10.1016/j.biortech.2019.122653.
[24] J. I. Humadi, A. A. Aabid, A. E. Mohammed, G. S. Ahmed, and M. A. Abdulqader, “New Design of Eco-Friendly Catalytic Electro-Photo Desulfurization process for Real Diesel Fuel,” Chem. Eng. Res. Des., 2024.
https://doi.org/10.1016/j.cherd.2024.05.001.
[25] M. A. Abdulqader, A. S. Abdulhameed, A. H. Jawad, S. Shatir, and A. S. Hassan, “Conversion of oily sludge into char via pyrolysis and microwave processes : physicochemical property and energy characteristic,” Biomass Convers. Biorefinery, no. 0123456789, 2022.
doi: 10.1007/s13399-022-03519-5.
[26] B. M. Ali, M. I. Salih, M. A. Abdulqader, B. Bakthavatchalam, and O. A. Hussein, “Dehydration and decarboxylation via pyrolysis process of waste oily sludge accumulated at North Refineries Company Baiji for use as a pyro-fuel,” Desalin. Water Treat., p. 100330, 2024.
https://doi.org/10.1016/j.dwt.2024.100330.
[27] X. Ning et al., “Physiochemical, structural and combustion properties of hydrochar obtained by hydrothermal carbonization of waste polyvinyl chloride,” Fuel, vol. 270, no. February, p. 117526, 2020.
doi: 10.1016/j.fuel.2020.117526.
[29] S. Nizamuddin et al., “An overview of effect of process parameters on hydrothermal carbonization of biomass,” Renew. Sustain. Energy Rev., vol. 73, no. February, pp. 1289– 1299, 2017, doi: 10.1016/j.rser.2016.12.122.
doi: 10.1016/j.rser.2016.12.122.
[30] M. A. Abdulqader et al., “Total Remediation of NRC Oily Sludge Using Hydrothermal Carbonization for Hydro char Production,” in 2023 International Conference on Engineering, Science and Advanced Technology (ICESAT), IEEE, 2023, pp. 230–235.
https://ieeexplore.ieee.org/document/10347311.
[31] M. Ahmed Alwaise et al., “The effect of physical properties of lost petroleum quantities in vertical tanks at (NRC) Baiji,” Energy Explor. Exploit., p. 01445987231220961, 2023.
https://doi.org/10.1177/01445987231220961.
[32] S. Kang, X. Li, J. Fan, and J. Chang, “Solid fuel production by hydrothermal carbonization of black liquor,” Bioresour. Technol., vol. 110, pp. 715–718, 2012, doi: 10.1016/j.biortech.2012.01.093.
doi: 10.1016/j.biortech.2012.01.093.
[33] S. D. Salman et al., “Synthesis and Characterization of xerogel Derived from Palm Kernel Shell Biochar and Comparison with Commercial Activated Carbon,” J. Ecol. Eng.
[34] S. S. A. Syed-Hassan, Y. Wang, S. Hu, S. Su, and J. Xiang, “Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations,” Renew. Sustain. Energy Rev., vol. 80, no. January, pp. 888–913, 2017, doi: 10.1016/j.rser.2017.05.262.
doi: 10.1016/j.rser.2017.05.262.
[35] S. A. Gheni, A. E. Mohammed, W. T. Mohammed, M. A. Abdulqader, and O. A. Habeeb, “Converting Iraqi Hazardous Crude Oily Sludge into Value-Added Activated Carbon using KOH Activation Technique,” J. Pet. Res. Stud., vol. 14, no. 1, pp. 154–175, 2024.
http://doi.org/10.52716/jprs.v14i1.773.
[36] J. Lee, D. Sohn, K. Lee, and K. Y. Park, “Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant,” Chemosphere, vol. 230, pp. 157–163, 2019, doi: 10.1016/j.chemosphere.2019.05.066.
doi: 10.1016/j.chemosphere.2019.05.066.
[37] M. Liang, K. Zhang, P. Lei, B. Wang, C. M. Shu, and B. Li, “Fuel properties and combustion kinetics of hydrochar derived from co-hydrothermal carbonization of tobacco residues and graphene oxide,” Biomass Convers. Biorefinery, vol. 10, no. 1, pp. 189–201, 2020, doi: 10.1007/s13399-019-00408-2.
doi: 10.1007/s13399-019-00408-2.
[38] A. E. Mohammed and H. M. S. Al-jubouri, “Total remediation of North Refineries Company oily sludge using hydrothermal carbonization for hydrochar production”.
doi:10.33899/rjs.2023.181262.
[40] D. Kim, K. Lee, and K. Y. Park, “Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery,” Fuel, vol. 130, pp. 120–125, 2014, doi: 10.1016/j.fuel.2014.04.030.
doi: 10.1016/j.fuel.2014.04.030.
[41] A. Funke and F. Ziegler, “Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering,” Biofuels, Bioprod. Biorefining, vol. 4, no. 2, pp. 160–177, 2010.
https://doi.org/10.1002/bbb.198.
[42] H. S. Kambo and A. Dutta, “Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel,” Energy Convers. Manag., vol. 105, pp. 746–755, 2015,
doi: 10.1016/j.enconman.2015.08.031.
[43] A. Reghioua, M. A. Abdulqader, and A. Khaoula, “The exploitation of the Peanut Shells wastes and converting into sustainable materials as low cost adsorbent that contributes to water pollutant sequestration.,” in Book of Abstracts of The first international Seminar on Catalysis, Chemical Engineering & Green Chemistry (CaCEG-2023), 2022, p. 64.
https://www.researchgate.net/publication/373976604.
[44] H. M. Issa et al., “Shear Strengthening of Recycled Lightweight Coarse Aggregate Concrete Beams Using NSM Technique,” Mesopotamian J. Civ. Eng., vol. 2024, pp. 115– 126, 2024.
https://doi.org/10.58496/MJCE/2024/013.
[45] A. L. Pauline and K. Joseph, “Hydrothermal carbonization of oily sludge for solid fuel recovery – investigation of chemical characteristics and combustion behaviour,” J. Anal. Appl. Pyrolysis, vol. 157, no. June, p. 105235, 2021,
doi: 10.1016/j.jaap.2021.105235.
[47] E. A. Hameed, R. A. Salih, A. M. Saleh, H. M. Issa, and M. A. Abdulqader, “The Effect of Chemical Coagulant Dosages on the Removal of Turbidity from Wastewater,” AUIQ Complement. Biol. Syst., vol. 1, no. 1, p. 6, 2024.
https://doi.org/10.70176/3007-973X.1006.
[48] X. Zhang, Q. Qin, X. Liu, and W. Wang, “Effects of Stepwise Microwave Synergistic Process Water Recirculation During Hydrothermal Carbonization on Properties of Wheat Straw,” Front. Energy Res., vol. 10, no. March, pp. 1–11, 2022,
doi: 10.3389/fenrg.2022.846752.