Comprehensive Review on Carbon Steels Corrosion in Chloride-Rich Media

Document Type : Review paper

Authors

1 Chemistry Applied Department, College of Applied Science, University of Technology, Baghdad, Iraq.

2 Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq.

Abstract

Corrosion is a serious engineering and economic problem that affects metals and alloys, particularly carbon steel, which is widely used in many industrial applications. This review provides a comprehensive overview of the corrosion of carbon steels in rich chloride media, beginning with an examination of corrosion mechanisms and factors that influence corrosion, as well as the types of corrosion and the primary corrosion products (rust). It also explores the primary methods used in studying and monitoring corrosion (non-electrochemical and electrochemical techniques), starting from laboratory experiments to advanced analytical techniques. Among the strategies to mitigate corrosion, the use of corrosion inhibitors plays a crucial role in reducing the corrosion rate of carbon steels. This is especially true in harsh environments rich in chloride, known for accelerating metal degradation. This review also presents previous studies on corrosion in chloride-rich waters. It evaluates the effectiveness of different inhibitors in controlling corrosion, contributing to the development of efficient protective solutions for metals under harsh and aggressive conditions.

Keywords

Main Subjects


[1] Exbrayat L, Salaluk S, Uebel M, Jenjob R, Rameau B, Koynov K, Landfester K, Rohwerder M, Crespy Nanosensors for monitoring early stages of metallic corrosion. ACS Applied Nano Materials. 2019 Jan;2(2):812–818. https://doi.org/10.1021/acsanm.8b02045
[2] Nwanonenyi SC, Obasi HC, Obidiegwu MU, Chukwujike IC. Anticorrosion response of polymer mixture on mild steel in hydrochloric acid environment. Emergent Materials. 2020 Aug 18;3(5):663–673. https://doi.org/10.1007/s42247-020-00120-2
[3] Fayyad EM, Abdullah AM, Hassan MK, Mohamed AM, Jarjoura G, Farhat Z. Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: a review. Emergent Materials. 2018 Aug 15;1(1-2):3–24. https://doi.org/10.1007/s42247-018-0010-4
[4] Babouri L, Belmokre K, Kabir A, Abdelouas A, Khettabi R, El Mendili Y. Microstructure and crystallographic properties of Cu77Zn21 alloy under the effect of heat treatment. Material at High Temperature. 2019 Jul 23;36(2):165–172. https://doi.org/10.1080/09603409.2018.1499243
[5] Gollapudi S, Cai W, Patibanda S, Rajulapati KV, Neelakantan L. Correlating corrosion inhibition to grain size in electrodeposited Ni-18Co. Emergent Materials. 2020 Oct 30;3:989–997. https://doi.org/10.1007/s42247-020-00135-9
[6] Ali AA. An Investigation to the Abrasive Wear in Pipes Used for Oil Industry. Journal of 2013 Nov 1;19(11):1382-1394. https://doi.org/10.31026/j.eng.2013.11.03
[7] Nsaif HJ, Majeed NS, Salman RH, Abed KM. Elimination of phenol by sonoelctrochemical process utilizing graphite, stainless steel, and titanium anodes: optimization by taguchi approach. Iraqi Journal of Chemical and Petroleum Engineering. 2024 Sep 30;25(3):21-30. https://doi.org/10.31699/IJCPE.2024.3.3
[8] Ahmed SA, Makki HF. Corrosion rate optimization of mild-steel under different cooling tower working parameters using Taguchi design. Journal of Engineering. 2019;26(1):174-185. http://doi.org/10.31026/j.eng.2020.01.13
[9] Bahrami Panah N, Danaee I. Effect of Structural Changes on Corrosion Inhibition Behavior of Synthesized N2O4 Imine Compounds for Steel Pipelines in Oil and Gas Wells. Journal of Chemical and Petroleum Engineering. 2019 Jun 1;53(1):1-10. https://doi.org/10.22059/jchpe.2019.232647.1193
[10] Amin MA, Abd El Rehim SS, El-Lithy AS. Corrosion, passivation and breakdown of passivity of Al and Al–Cu alloys in gluconic acid solutions. Electrochimica Acta. 2010 Aug 1;55(20):5996–6003. https://doi.org/10.1016/j.electacta.2010.05.055
[11] Jasim RA, Salman RH. Use of nano Co-Ni-Mn composite and aluminum for removal of artificial anionic dye congo red by combined system. Ecological Engineering & Environmental 2024 Jun 1;25(7):133-149. https://doi.org/10.12912/27197050/188266
[12] Fernandes JS, Montenor F. Corrosion. Materials for Construction and Civil Engineering. 2015 Jan 1;2:679-71. http://doi.org/10.1007/978-3-319-08236-3_15
[13] Singh DD. Various forms of water side Corrosion: Causes & Prevention. In: Proceedings of the National Workshop on Boiler Corrosion. 1995 April;16-23. https://eprints.nmlindia.org/3557
[14] Kumar R, Kumar R, Kumar S. Erosion corrosion study of HVOF sprayed thermal sprayed coating on boiler tubes: a review. IJSMS. 2018;1(3):1-6. https://www.ijsmsjournal.org/2018/volume-1%20issue-3/ijsms-v1i3p101.pdf
[15] Palanisamy G. Corrosion inhibitors. In Corrosion Inhibitors. 2019 July 23:44-53. http://doi.org/10.5772/intechopen.80542
[16] Abdulsada SA, Al‑Mosawi AI. Surface Characteristics and Corrosion Tendency of TIG‑Welded Low Carbon Steel Sheet Affected Cold Galvanizing and Processed by Immersion in Sodium Chloride Solution. Journal of Bio- and Tribo-Corrosion. 2024 April 9;10(34). https://doi.org/10.1007/s40735-024-00838-0
[17] Odusote JK, Ajiboye TK, Rabiu AB. Evaluation of Mechanical Properties of Medium Carbon Steel Quenched in Water and Oil. AU Journal of Technology. 2012 April;15(4):218-224. https://assumptionjournal.au.edu/index.php/aujournaltechnology/article/view/1375/1209
[18] Chen Y, Zheng S, Zhou J, Wang P, Chen L, Qi Y. Influence of H2S interaction with prestrain on the mechanical properties of high-strength X80 steel. International journal of hydrogen energy. 2016 Jun 29;41(24):10412-10420. https://doi.org/10.1016/j.ijhydene.2016.01.144
[19] Javidan F, Heidarpour A, Zhao XL, Minkkinen J. Application of high strength and ultra-high strength steel tubes in long hybrid compressive members: Experimental and numerical investigation. Thin-Walled Structure. 2016 May;102;273-285. https://doi.org/10.1016/j.tws.2016.02.002
[20] Boumerzoug Z, Derfouf C, Baudin T. Effect of Welding on Microstructure and Mechanical Properties of an Industrial Low Carbon Steel. Engineering. 2010 July;2:502–506. http://doi.org/10.4236/eng.2010.27066
[21] Panda A, Duplak J, Hatala M, Krenicky T, Vrabel P. Research on the Durability of Selected Cutting Materials in the Process of Turning Carbon Steel. MM Science Journal. 2016 Oct;10: 1086–1089. https://doi.org/10.17973/MMSJ.2016_10_201660
[22] Karavaeva MV, Nurieva SK, Zaripov NG, Ganeev AV, Valiev RZ. Microstructure and mechanical properties of medium-carbon steel subjected to severe plastic deformation. Metal Science and Heat Treatment. 2012 July 21;54; 155–159. https://doi.org/10.1007/s11041-012-9473-8
[23] Kimapong K, Poonayom P, Wattanajitsiri V. Microstructure and wear resistance of hard-facing weld metal on JIS-S50C carbon steel in agricultural machine parts. Materials Science Forum. 2016 Sep; 872: 55–61. https://doi.org/10.4028/www.scientific.net/MSF.872.55
[24] Burduhos-Nergis DP, Baciu C, Vizureanu P, Lohan NM, Bejinariu C. Materials types and selection for carabiners manufacturing: A review. In Proceedings of the IOP Conference Series: Materials Science and Engineering. 2019;572:012027. http://doi.org/10.1088/1757-899X/572/1/012027
[25] Bejinariu C, Darabont DC, Baciu ER, Georgescu IS, Bernevig-Sava MA, and Baciu C. Considerations on applying the method for assessing the level of safety at work. Sustainability. 2017; 9(7):1263. https://doi.org/10.3390/su9071263
[26] Hamidinejad SM, Kolahan F, Kokabi AH. The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing. Material & Design. 2012 Feb;34:759–767. https://doi.org/10.1016/j.matdes.2011.06.064
[27] Sekban DM, Aktarer SM, Xue P, Ma ZY, Purcek G. Impact toughness of friction stir processed low carbon steel used in shipbuilding. Materials Science and Engineering A, 2016 Aug 30; 672: 40–48. https://doi.org/10.1016/j.msea.2016.06.063
[28] Usher KM, Kaksonen AH, Cole I, Marney D. Critical review: Microbially influenced corrosion of buried carbon steel pipes. International Biodeterioration and Biodegradation. 2014 Sept; 93: 84–106. https://doi.org/10.1016/j.ibiod.2014.05.007
[29] Ouda EH, Khazaal SH, Abbas J. An Application of Cooperative Game Theory in Oil Refining Sites: Case Study of Dora Refinery in Iraq. In International Conference on Intelligent and Fuzzy Systems 2023 Aug 17:592-599. https://doi.org/10.1007/978-3-031-39777-6_69
[30] Bharatiya U., Gal P., Agrawal A., Shah M., and Sircar A., Effect of Corrosion on Crude Oil and Natural Gas Pipeline with Emphasis on Prevention by Ecofriendly Corrosion Inhibitors: A Comprehensive Review, Journal of Bio- and Tribo-Corrosion, (2019), 5(35) https://doi.org/10.1007/s40735-019-0225-9
[31] Gandy D. Carbon Steel Handbook. 2007 March; 3(3): 172. http://gang.josen.net/uploads/allimg/20230415/1-2304151923021a.pdf
[32] Uhlig HH. Corrosion Control in Water Systems. Industrial & Engineering Chemistry. 1952 Aug;44(8):1736-40. https://pubs.acs.org/doi/pdf/10.1021/ie50512a017
[33] Abdulsada SA, Al-Mosawi AI. Corrosion behaviour and surface topography for steel plates used in automotive industry exposed to salty corrosive thermo-accelerated medium. Journal of Silicate Based and Composite Materials. 2022;74(6):38–41. https://doi.org/10.14382/epitoanyag-jsbcm.2022.31
[34] Harsimran S, Santosh K, Rakesh K. Overview of Corrosion and Its Control: a Critical Review. Proceedings on Engineering Sciences. 2021; 3(1); 13–24. https://doi.org/10.24874/PES03.01.002
[35] Ahmed SA, Makki HF. Corrosion behavior of mild-steel in cooling towers using high salinity solution. AIP Conference Proceedings. 2020 March 25;2213(1):020178. https://doi.org/10.1063/5.0000274
[36] Vorobyova V, Skiba M. Peach Pomace Extract as efficient Sustainable Inhibitor for carbon Steel against Chloride-Induced corrosion. Journal of Bio- and Tribo-Corrosion. 2020 Nov 16;7(1):11 https://doi.org/10.1007/s40735-020-00450-y
[37] Liu MY, Shi B, Wang C, Ji SK, Cai X, Song HW. Normal Hall–Petch behavior of mild steel with submicron grains. Materials letters. 2003 Jun 1;57(19):2798-802. https://doi.org/10.1016/S0167-577X(02)01377-0
[38] Chigondo M, Chigondo F. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview. Journal of chemistry. 2016 Jul 14;2016(6208937):7. https://doi.org/10.1155/2016/6208937
[39] Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel. Materials Science and Engineering: A. 2018 Oct 24;736:22-26. https://doi.org/10.1016/j.msea.2018.08.088
[40] Ralston KD, Birbilis N. Effect of grain size on corrosion: a review. Corrosion. 2010 Jul 1;66(7):075005. https://doi.org/10.5006/1.3462912
[41] Ralston KD, Birbilis N, Davies CH. Revealing the relationship between grain size and corrosion rate of metals. Scripta Materialia. 2010 Dec 1;63(12):1201-1204. https://doi.org/10.1016/j.scriptamat.2010.08.035
[42] Chen YT, Zhang KG. Influence of grain size on corrosion resistance of a HSLA steel. Advanced Materials Research. 2012 Oct 10;557:143-146. https://doi.org/10.4028/www.scientific.net/AMR.557-559.143
[43] Soleimani M, Mirzadeh H, Dehghanian C. Unraveling the Effect of Martensite Volume Fraction on the Mechanical and Corrosion Properties of Low‐Carbon Dual‐Phase Steel. Steel research international. 2020 Feb;91(2):1900327. https://doi.org/10.1002/srin.201900327
[44] Li Y, Wang F, Liu G. Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel. Corrosion. 2004 Oct 1;60(10):891-896. https://doi.org/10.5006/1.3287822
[45] Soleimani M, Mirzadeh H, Dehghanian C. Processing route effects on the mechanical and corrosion properties of dual phase steel. Metals and Materials International. 2020 Jun;26:882-890. https://doi.org/10.1007/s12540-019-00459-0
[46] Levy AV. Erosion and erosion-corrosion of metals. Corrosion. 1995 Nov 1;51(11):872-883. https://doi.org/10.5006/1.3293564
[47] Chappell C. The influence of carbon on the corrodibility of iron. Journal of the American Society for Naval Engineers. 1912 Aug;24(3):1061. https://doi.org/10.1111/j.1559-3584.1912.tb04648.x
[48] Décarie E, Boatman TG, Bennett N, Passfield W, Gavalás‐Olea A, Siegel P, Geider RJ. Predictions of response to temperature are contingent on model choice and data quality. Ecology and evolution. 2017 Dec;7(23):10467-10481. https://doi.org/10.1002/ece3.3576
[49] Zehra S, Mobin M, Aslam J. An overview of the corrosion chemistry. Environmentally Sustainable Corrosion Inhibitors. 2022 Jan 1:3-23. https://doi.org/10.1016/B978-0-323-85405-4.00012-4
[50] Standard practice for preparing, cleaning, and evaluating corrosion test specimens, ASTM Standard G1-03. ASTM. 2017.
[51] Fontana MG. Corrosion Engineering. McGraw-Hill Book Company. New York. 1986. https://www.osti.gov/biblio/5741236
[52] Ma Y, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride Corrosion science. 2009 May 1;51(5):997-1006. https://doi.org/10.1016/j.corsci.2009.02.009
[53] Mahzan S, Rusli RI. Corrosion Behaviour of a Low Carbon Steel Piping Exposed to Different Water Conditions. Research Progress in Mechanical and Manufacturing Engineering. 2023 Aug 1;4(1):413-419. https://doi.org/10.30772/qjes.2024.149684.1233
[54] Fonna S, Ibrahim IB, Huzni S, Ikhsan M, Thalib S. Investigation of corrosion products formed on the surface of carbon steel exposed in Banda Aceh's atmosphere. Heliyon. 2021 Apr 1;7(4). https://doi.org/10.1016/j.heliyon.2021.e06608
[55] Liu Y, Wang Z, Wei Y. Influence of seawater on the carbon steel initial corrosion behavior. International Journal of Electrochemical Science. 2019 Feb 1;14(2):1147-1162. https://doi.org/10.20964/2019.02.36
[56] He S, He S, Yu P, Li H, Feng J, Liao P, Liao J, Huang X. Corrosion behaviour of carbon steel in Beibu Gulf tidal zone. Corrosion Engineering, Science and Technology. 2023 Apr;58(2):116-123. https://doi.org/10.1080/1478422X.2022.2149426
[58] Odio BO, Chinwuko EC, Chukwuneke JL, Sinebe JE. Investigation of the effect of corrosion on mild steel in five different environments. International Journal of Scientific & Technology Research. 2014;3(7):306-310. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6ac40b3b0bc0f357ce11e38703415788727f97cc
[59] Berradja A. Electrochemical techniques for corrosion and tribocorrosion monitoring: methods for the assessment of corrosion rates. Corrosion inhibitors. 2019 Jul 2; 26. https://doi.org/10.5772/intechopen.86743
[60] Suzuki S. Surface analysis of oxides and corrosion products formed on surfaces of iron-based alloys. In Characterization of Corrosion Products on Steel Surfaces. 2006 Oct 6:131-158. https://doi.org/10.1007/978-3-540-35178-8_7
[61] Popoola LT. Organic green corrosion inhibitors (OGCIs): a critical review. Corrosion Reviews. 2019 Mar 26;37(2):71-102. https://doi.org/10.1515/corrrev-2018-0058
[62] Li H, Zhang S, Qiang Y. Corrosion retardation effect of a green cauliflower extract on copper in H2SO4 solution: Electrochemical and theoretical explorations. Journal of Molecular Liquids. 2021 Jan 1;321:114450. https://doi.org/10.1016/j.molliq.2020.114450
[63] Şahin EA, Solmaz R, Gecibesler İH, Kardaş G. Adsorption ability, stability and corrosion inhibition mechanism of phoenix dactylifera extrat on mild steel. Materials Research Express. 2020 Jan 27;7(1):016585. https://doi.org/10.1088/2053-1591/ab6ad3
[64] Al-Ghaban AM, Abdullah HA, Anaee RA, Naser SA, Khadom AA. Expired butamirate drug as eco-friendly corrosion inhibitor for aluminum in seawater: Experimental and theoretical studies. Journal of Engineering Research. 2024 Sep 1;12(3):299-309. https://doi.org/10.1016/j.jer.2023.11.020
[65] Zhang K, Xu B, Yang W, Yin X, Liu Y, Chen Y. Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corrosion Science. 2015 Jan 1;90:284-295. https://doi.org/10.1016/j.corsci.2014.10.032
[66] Khormali A. Using a New Mixture of Reagents for Effective Inhibition of Corrosion and Salt Precipitation in the Petroleum Industry. Journal of Chemical and Petroleum Engineering. 2021 Dec 1;55(2):257-276. https://doi.org/10.22059/jchpe.2021.322527.1349
[67] Shwetha KM, Praveen BM, Devendra BK. A review on corrosion inhibitors: types, mechanisms, electrochemical analysis, corrosion rate and efficiency of corrosion inhibitors on mild steel in an acidic environment. Results in Surfaces and Interfaces. 2024 Aug 1;16:100258. https://doi.org/10.1016/j.rsurfi.2024.100258
[68] Sabbaghi S, Bazargan Lari R, Zeraatkar M. Multilayer nano films for corrosion control. International Journal of Nanoscience and Nanotechnology. 2011 Jun 1;7(2):72-77. https://www.ijnnonline.net/article_3943_0.html
[69] Martinez-Lombardia E, Maurice V, Lapeire L, De Graeve I, Verbeken K, Kestens L, Marcus P, Terryn H. In situ scanning tunneling microscopy study of grain-dependent corrosion on microcrystalline The Journal of Physical Chemistry C. 2014 Oct 8;118(44):25421-25428. https://doi.org/10.1021/jp507089f
[70] Bokati KS, Dehghanian C. Adsorption behavior of 1H-benzotriazole corrosion inhibitor on aluminum alloy 1050, mild steel and copper in artificial seawater. Journal of Environmental Chemical Engineering. 2018 Apr 1;6(2):1613-1624. https://doi.org/10.1016/j.jece.2018.02.015
[71] Lopez DA, Schreiner WD, De Sánchez SR, Simison SN. The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization. Applied surface science. 2003 Feb 28;207(1-4):69-85. https://doi.org/10.1016/S0169-4332(02)01218-7
[72] Scimeca M, Orlandi A, Terrenato I, Bischetti S, Bonanno E. Assessment of metal contaminants in non-small cell lung cancer by EDX microanalysis. European journal of histochemistry: EJH. 2014 Sep 12;58(3):2403. https://doi.org/10.4081/ejh.2014.2403
[73] Scimeca M, Giannini E, Antonacci C, Pistolese CA, Spagnoli LG, Bonanno E. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC cancer. 2014 Dec;14:1-0. https://doi.org/10.1186/1471-2407-14-286
[74] Scimeca M, Feola M, Romano L, Rao C, Gasbarra E, Bonanno E, Brandi ML, Tarantino U. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients. Environmental Toxicology. 2017 Apr;32(4):1333-1342. https://doi.org/10.1002/tox.22327
[75] Barba T, Wach J, Lustig S, Laurent F, Devouassoux-Shisheboran M, Valour F, Chidiac C, Ferry T. Metallosis-associated prosthetic joint infection. Médecine et maladies infectieuses. 2015 Nov 14;45(11-12):484-487. https://doi.org/10.1016/j.medmal.2015.09.009
[76] Khan H, Hurworth M, Kop A. Metallosis following a dual coat porous hydroxyapatite shoulder hemiarthroplasty. journal of orthopaedics. 2015 Dec 1;12(4):266-271. https://doi.org/10.1016/j.jor.2015.02.005
[77] Aljaafari HA, Ali SB, Abbas MA, Ali HB, Anaee RA, Naser SA, Mahdi RI, Anaee MA. Improvement in the Corrosion Behavior of Al-Si-xWC Composites Prepared by Casting Technique. Journal of Bio-and Tribo-Corrosion. 2024 Sep 5;10(100). https://doi.org/10.1007/s40735-024-00902-9
[78] Li J, Lampner D. In-situ AFM study of pitting corrosion of Cu thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999 Aug 1;154(1-2):227-237. https://doi.org/10.1016/S0927-7757(98)00901-7
[79] Ataeefard M, Moradian S. Surface properties of polypropylene/organoclay nanocomposites. Applied Surface Science. 2011 Jan 1;257(6):2320-2326. https://doi.org/10.1016/j.apsusc.2010.09.096
[80] Bowen WR, Hilal N. Atomic force microscopy in process engineering: An introduction to AFM for improved processes and products. Butterworth-Heinemann; 2009 Jun 30. https://books.google.com/books?hl=en&lr=&id=XKByFSz316sC&oi=fnd&pg=PP1&dq=Atomic+force+microscopy+in+process+engineering:+An+introduction+to+AFM+for+improved+processes+and+products&ots=bR7SilpY6P&sig=7IKJr55qYhJZNrmtBX4x-z1EfK8
[81] Al-Hassan S, Mishra B, Olson DL, Salama MM. Effect of microstructure on corrosion of steels in aqueous solutions containing carbon dioxide. Corrosion. 1998 Jun 1;54(06):480–491. https://doi.org/10.5006/1.3284876
[82] Kautek W, Geuß M, Sahre M, Zhao P, Mirwald S. Multi‐method Analysis of the Metal/Electrolyte Interface: Scanning Force Microscopy (SFM), Quartz Microbalance Measurements (QMB), Fourier Transform Infrared Spectroscopy (FTIR) and Grazing Incidence X‐ray Diffractometry (GIXD) at a Polycrystalline Copper Electrode. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films. 1997 Jun;25(7‐8):548-560. https://doi.org/10.1002/(SICI)1096-9918(199706)25:7/8%3C548::AID-SIA269%3E3.0.CO;2-B
[83] Sathiyanarayanan S, Sahre M, Kautek W. In-situ grazing incidence X-ray diffractometry observation of pitting corrosion of copper in chloride solutions. Corrosion science. 1999 Oct 15;41(10):1899-1909. https://doi.org/10.1016/S0010-938X(99)00021-9
[84] Qiu JH, Chua PH. EIS and XPS study of the corrosion of carbon steel in inhibited natural seawater. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films. 1999 Aug;28(1):119-122. https://doi.org/10.1002/(SICI)1096-9918(199908)28:1%3C119::AID-SIA631%3E3.0.CO;2-T
[85] Xiang Y, Yan M, Choi YS, Young D, Nesic S. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process. International Journal of Greenhouse Gas Control. 2014 Nov 1;30:125-132. https://doi.org/10.1016/j.ijggc.2014.09.003
[86] Lopez DA, Schreiner WH, De Sanchez SR, Simison SN. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: An XPS and SEM characterization. Applied Surface Science. 2004 Sep 15;236(1-4):77-97. https://doi.org/10.1016/j.apsusc.2004.03.247
[87] Gutiérrez C, Melendres CA, editors. Spectroscopic and diffraction techniques in interfacial electrochemistry. Springer Science & Business Media; 2012 Dec 6;320. https://link.springer.com/book/10.1007/978-94-011-3782-9
[88] Dwivedi D, Lepkova K, Becker T. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017 Mar 31;473(2199):20160852. https://doi.org/10.1098/rspa.2016.0852
[89] Adejoro IA, Ojo FK, Obafemi SK. Corrosion inhibition potentials of ampicillin for mild steel in hydrochloric acid solution. Journal of Taibah University for Science. 2015 Apr 1;9(2):196-202. https://doi.org/10.1016/j.jtusci.2014.10.002
[90] Singh R. Corrosion control for offshore structures: cathodic protection and high-efficiency Coating. Gulf Professional Publishing; 2014 Aug 12:41–44. www.sciencedirect.com/book/monograph/9780124046153/corrosion-control-for-offshore-structures
[91] Zinad DS, Jawad QA, Hussain MA, Mahal A, Mohamed L, Al-Amiery AA. Adsorption, temperature and corrosion inhibition studies of a coumarin derivatives corrosion inhibitor for mild steel in acidic medium: gravimetric and theoretical investigations. International Journal of Corrosion and Scale Inhibition. 2020;9(1):134-151. https://dx.doi.org/10.17675/2305-6894-2020-9-1-8
[92] Hashim FG, Salman TA, Al-Baghdadi SB, Gaaz T, Al-Amiery A. Inhibition effect of hydrazine-derived coumarin on a mild steel surface in hydrochloric acid. Tribologia-Finnish Journal of 2020 Dec 11;37(3–4):45-53. https://doi.org/10.30678/fjt.95510
[93] Al-zyadi JM, Kadhim AA, Yao KL. Electronic and magnetic properties of the (001) surface of the CoNbMnSi Heusler alloy: First-principles calculations. Journal of Electron Spectroscopy and Related Phenomena. 2018 Jul 1;226:17-21. https://doi.org/10.1016/j.elspec.2018.04.005
[94] Mohammed DA, Fakhri MA, Kadhim A. Reduction the corrosion rate of 304 stainless steel using pulsed laser shock penning method. In IOP Conference Series: Materials Science and Engineering 2018 Dec 1;454(1):012162. IOP Publishing. http://doi.org/10.1088/1757-899X/454/1/012162
[95] Al-Zyadi JM, Kadhim AA, Yao KL. Half-metallicity of the (001),(111) and (110) surfaces of CoRuMnSi and interface half-metallicity of CoRuMnSi/CdS. RSC advances. 2018;8(45):25653-25663. https://doi.org/10.1039/C8RA02918K
[97] Obeyesekere NU. Pitting corrosion. Trends in oil and gas corrosion research and technologies. 2017 Jan 1:215-248. https://doi.org/10.1016/B978-0-08-101105-8.00009-7
[98] Yadla SV, Sridevi V, Lakshmi MV, Kumari SK. A review on corrosion of metals and protection. International Journal of Engineering Science & Advanced Technology. 2012;2(3):637-644. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=52d9b8f53fef6032c14ba1f3ccd93e893b825301
[99] Panahi H, Eslami A. An Investigation on Corrosion and Stress Corrosion Cracking initiation of a Ferritic Stainless Steel in a Tertiary Amine Solution. Journal of Chemical and Petroleum Engineering. 2019 Dec 1;53(2):203-210. https://doi.org/10.22059/jchpe.2019.271003.1258
[100] White L. Selective Leaching: Prevention and Testing. Technical Report. Degradation and Surface Engineering. 2015
[101] Melchers RE. Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel. Corrosion science. 2003 May 1;45(5):923-940. https://doi.org/10.1016/S0010-938X(02)00208-1
[102] Melchers RE, Jeffrey R. Early corrosion of mild steel in seawater. Corrosion Science. 2005 Jul 1;47(7):1678-1693. https://doi.org/10.1016/j.corsci.2004.08.006
[103] Pineau S, Sabot R, Quillet L, Jeannin M, Caplat C, Dupont-Morral I, Refait P. Formation of the Fe (II–III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase. Corrosion Science. 2008 Apr 1;50(4):1099-1111. https://doi.org/10.1016/j.corsci.2007.11.029
[104] Boudaud N, Coton M, Coton E, Pineau S, Travert J, Amiel C. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena. Journal of applied microbiology. 2010 Jul 1;109(1):166-179. https://doi.org/10.1111/j.1365-2672.2009.04643.x
[105] Usher KM, Kaksonen AH, MacLeod ID. Marine rust tubercles harbour iron corroding archaea and sulphate reducing Corrosion Science. 2014 Jun 1;83:189-197. https://doi.org/10.1016/j.corsci.2014.02.014
[106] Lanneluc I, Langumier M, Sabot R, Jeannin M, Refait P, Sablé S. On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel. International Biodeterioration & Biodegradation. 2015 Apr 1;99:55-65. https://doi.org/10.1016/j.ibiod.2015.01.003
[107] Stipanicev M, Turcu F, Esnault L, Rosas O, Basseguy R, Sztyler M, Beech IB. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation. Bioelectrochemistry. 2014 Jun 1;97:76-88. https://doi.org/10.1016/j.bioelechem.2013.09.006
[108] Rlinger MI, Samokhvalov AA. Electron conduction in magnetite and ferrites. physica status solidi (b). 1977 Jan 1;79(1):9-48. https://doi.org/10.1002/pssb.2220790102
[109] Lopez Maldonado KL, De La Presa P, De La Rubia MA, Crespo P, De Frutos J, Hernando A, Matutes Aquino JA, Elizalde Galindo JT. Effects of grain boundary width and crystallite size on conductivity and magnetic properties of magnetite nanoparticles. Journal of nanoparticle research. 2014 Jun 17;16(2482):1-12. https://doi.org/10.1007/s11051-014-2482-3
[110] Dong ZH, Shi W, Ruan HM, Zhang GA. Heterogeneous corrosion of mild steel under SRB-biofilm characterized by electrochemical mapping technique. Corrosion Science. 2011 Sep 1;53(9):2978-2987. https://doi.org/10.1016/j.corsci.2011.05.041
[111] Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F. Marine sulfate‐reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental microbiology. 2012 Jul;14(7):1772-1787. https://doi.org/10.1111/j.1462-2920.2012.02778.x
[112] Refait P, Grolleau AM, Jeannin M, François E, Sabot R. Localized corrosion of carbon steel in marine media: Galvanic coupling and heterogeneity of the corrosion product layer. Corrosion Science. 2016 Oct 1;111:583-595. https://doi.org/10.1016/j.corsci.2016.05.043
[113] Ezzati M, Gélinas YA. Methodological Study on the Analysis of Organic Matter Associated with Iron Oxides in Marine Sediments. Applied Geochemistry. 2025 Jan 22;180:106295. https://doi.org/10.1016/j.apgeochem.2025.106295
[114] Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences, and uses. Weinheim: Wiley-vch; 2003 Oct 17;664. https://doi.org/10.1515/CORRREV.1997.15.3-4.533
[115] Antunes RA, Costa I, Faria DL. Characterization of corrosion products formed on steels in the first months of atmospheric Materials research. 2003 Jun;6(3):403-408. https://doi.org/10.1590/S1516-14392003000300015
[116] Abdulsada SA, Al-Mosawi AI. Analysis of corrosion rate, inhibition efficiency, and economic cost of XD3 reinforced concrete related to inhibitor and plasticiser types. Engineering Research Express. 2023 Aug 17;5(3):035032. https://doi.org/10.1088/2631-8695/acee46
[117] Wang R, Chu G, Zhang J, Liu R, Wang Y, Sun L, Cao Z, Song L, Ma F. Influence of stress on corrosion behavior and evolution model of Q235 steel in marine environments. International Journal of Pressure Vessels and Piping. 2025 Apr 1;214:105388. https://doi.org/10.1016/j.ijpvp.2024.105388
[118] Oh SJ, Cook DC, Townsend HE. Characterization of iron oxides commonly formed as corrosion products on Hyperfine interactions. 1998 Dec;112(1):59-66. https://doi.org/10.1023/A:1011076308501
[119] Ding K, Cheng W, Zhang P, Guo W, Fan L, Xu L, Hou J. Study on corrosion behavior of typical carbon steel and low alloy steel in deep sea of different sea areas. Corrosion Reviews. 2024 Feb 26;42(1):75- https://doi.org/10.1515/corrrev-2022-0113
[120] Pornpibunsompob T, Saidarasamoot S, Phabjanda S, Pornyungyuen T, Gositanon A, Chalermboon S, Nakaracha Corrosion of Low Carbon Steel in Chloride Containing Environment. ASEAN Journal of Scientific and Technological Reports. 2022 Nov 20;25(4):21-29. https://doi.org/10.55164/ajstr.v25i4.247174
[121] Thalib S, Ikhsan M, Fonna S, Huzni S, Ridha S. Identification of corrosion product on medium carbon steel under the exposure of Banda Aceh’s atmosphere. In IOP Conference Series: Materials Science and Engineering 2018 May 1;352(1):012004. http://doi.org/10.1088/1757-899X/352/1/012004
[122] Kumar V, Sharma N, Tiwari SK, Kango S. Atmospheric corrosion of materials and their effects on mechanical properties: A brief review. Materials Today: Proceedings. 2021 Jan 1;44(6):4677-4681. https://doi.org/10.1016/j.matpr.2020.10.939
[123] Gao J, Wang N, Chen H, Xu X. The Influence of 1 wt.% Cr on the corrosion resistance of low-alloy steel in marine Metals. 2023 May 30;13(6):1050. https://doi.org/10.3390/met13061050
[124] Wang D, Li Y, Li Z, Zhang L, Zhang Q, Dong H, Zhang J. Corrosion behaviour and mechanical property degradation of Q355b steel under coupled environmental loads. KSCE Journal of Civil 2025 Jun 1;29(6):100119. https://doi.org/10.1016/j.kscej.2024.100119
[125] Alcántara J, Chico B, Simancas J, Díaz I, De la Fuente D, Morcillo M. An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres. Materials Characterization. 2016 Aug 1;118:65-78. https://doi.org/10.1016/j.matchar.2016.04.027
[126] Song Y, Jiang G, Chen Y, Zhao P, Tian Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific reports. 2017 Jul 31;7(1):6865. https://doi.org/10.1038/s41598-017-07245-1
[127] Cui Y, Liu S, Smith K, Yu K, Hu H, Jiang W, Li Y. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment. Water Research. 2016 Jan 1;88:816-825. https://doi.org/10.1016/j.watres.2015.11.021
[128] Qi G, Qin X, Xie J, Han P, He B. Electrochemical corrosion behaviour of four low-carbon steels in saline RSC advances. 2022;12(32):20929-20945. https://doi.org/10.1039/D2RA03200G
[129] Rao P, Mulky L. Microbially influenced corrosion and its control measures: A critical review. Journal of Bio-and Tribo-Corrosion. 2023 Jun 26;9(57). https://doi.org/10.1007/s40735-023-00772-7
[130] Solomon MM, Umoren SA. Enhanced corrosion inhibition effect of polypropylene glycol in the presence of iodide ions at mild steel/sulphuric acid interface. Journal of environmental chemical engineering. 2015 Sep 1;3(3):1812-1826, https://doi.org/10.1016/j.jece.2015.05.018
[131] Singh P, Srivastava V, Quraishi MA. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. Journal of Molecular Liquids. 2016 Apr 1;216:164-173, https://doi.org/10.1016/j.molliq.2015.12.086
[132] Verma C, Ebenso EE, Quraishi MA. Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: A review. Journal of Molecular Liquids. 2017 Dec 1;248:927-942. https://doi.org/10.1016/j.molliq.2017.10.094
[133] Kelly RG, Scully JR, Shoesmith D, Buchheit RG. Electrochemical techniques in corrosion science and engineering. CRC Press; 2002 Sep 13. https://doi.org/10.1201/9780203909133
[134] Chitra S, Parameswari K, Sivakami C, Selvaraj A. Sulpha Schiff Bases as corrosion inhibitors for mild steel in 1M sulphuric acid. Chemical Engineering Research Bulletin. 2010 Feb 7;14(1):1-6. https://www.researchgate.net/publication/44250663_Sulpha_Schiff_Bases_as_Corrosion_Inhibitors_for_Mild_Steel_in_1M_Sulphuric_Acid
[135] Bentiss F, Lagrenee M, Traisnel M, Hornez JC. The corrosion inhibition of mild steel in acidic media by a new triazole derivative. Corrosion science. 1999 Apr 1;41(4):789-803. https://doi.org/10.1016/S0010-938X(98)00153-X
[136] Jasim ZI, Rashid KH, AL-Azawi KF, Khadom AA. Synthesis of schiff-based derivative as a novel corrosion inhibitor for mild steel in 1 M HCl solution: optimization, experimental, and theoretical investigations. Journal of Bio-and Tribo-Corrosion. 2023 Jun 20;9(54).https://doi.org/10.1007/s40735-023-00774-5
[137] El-Rehim SA, Refaey SA, Taha F, Saleh MB, Ahmed RA. Corrosion inhibition of mild steel in acidic medium using 2-amino thiophenoland 2-cyanomethyl benzothiazole. Journal of Applied Electrochemistry. 2001 Apr;31:429-435. https://doi.org/10.1023/A:1017592322277
[138] El Azhar M, Mernari B, Traisnel M, Bentiss F, Lagrenée M. Corrosion inhibition of mild steel by the new class of inhibitors [2, 5-bis (n-pyridyl)-1, 3, 4-thiadiazoles] in acidic media. Corrosion Science. 2001 Dec 1;43(12):2229-2238. https://doi.org/10.1016/S0010-938X(01)00034-8
[139] Samide A, Bibicu I, Rogalski MS, Preda M. Study of the corrosion inhibition of carbon-steel in dilute ammoniacal media using N-ciclohexil-benzothiazole-sulphenamida. Corrosion 2005 May 1;47(5):1119-1127. https://doi.org/10.1016/j.corsci.2004.06.018
[140] Mohammed RA, Hussein SZ. Corrosion inhibition of carbon steel in saline water using an azo dye at various concentrations. Int. J. Corros. Scale Inhib. 2024;13(1):241-253. https://dx.doi.org/10.17675/2305-6894-2024-13-1-12
[141] Ali N, Fonna S, Nurdin N, Saputra Y, Arifin AK. Assessment of Syzygium cumini (Jamblang) fruit extract as an eco-friendly corrosion inhibitor for low-carbon steel in 3.5% NaCl medium. Int. J. Corros. Scale Inhib. 2024;13:223-240. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://ijcsi.pro/wp-content/uploads/2024/02/ijcsi-2024-v13-n1-p11.pdf&ved=2ahUKEwjvxvWkzsCRAxXwSzABHSUmHzIQFnoECBsQAQ&usg=AOvVaw27tFGKjWxcMqPF3I7H_xU2
[142] Francis SM, Venugopal T. Investigation of biocorrosion on mild steel in cooling tower water and its inhibition by C. sativum. AIMS Molecular Science. 2024 Oct 1;11(4):395–414. https://doi.org/10.3934/molsci.2024024
[143] Royani A, Hanafi M, Mubarak NM, Priyotomo G, Aigbodion VS, Musabikha S, Manaf A. Unveiling green corrosion inhibitor of Aloe vera extracts for API 5L steel in seawater environment. Scientific reports. 2024 Jun 18;14(1):14085. https://doi.org/10.1038/s41598-024-64715-z
[144] Namus RM, Abass MH, Alali M, Zedin NK. Using green corrosion inhibitor to reduce maintenance cost for carbon steel saline water storage systems in the oil industry. Koroze a Ochrana Materiálu. 2024;68(1):43-50. https://doi.org/10.2478/kom-2024-0005
[145] Crisan M, Muntean C, Chumakov Y, Plesu N. Investigating the corrosion inhibition mechanisms of alkanolammonium salts: a case study with ethylethanolammonium 4-nitrobenzoate on carbon steel in saline solution. Applied Sciences. 2024 Feb 23;14(5):1832. https://doi.org/10.3390/app14051832
[146] Moura MJ, Vasques RB, Levy MM, Magalhães SJ, Pascoal CV, Almeida-Neto FW, Lima-Neto P, Medeiros SL, Salomão FC, Barros EB, Araújo WS. Study of the Efficiency of the Amino Acid L-Histidine as a Corrosion Inhibitor of 1018 Carbon Steel in Saline Solution Without and with CO 2 Saturation. Materials Research. 2024 May 31;27:e20240135. https://doi.org/10.1590/1980-5373-MR-2024-0135
[147] Mahmood M, Shihab M. New organic ammonium salts as corrosion inhibitors for mild steel in saline solution. Egyptian Journal of Chemistry. 2024 Mar 1;67(3):209-214. https://www.researchgate.net/publication/374206488_New_organic_ammonium_salts_as_corrosion_inhibitors_for_mild_steel_in_saline_solution
[148] Royani A, Hanafi M, Haldhar R, Manaf A. Evaluation of Morinda citrifolia extract as sustainable inhibitor for mild steel in saline environment. Journal of Engineering Research. 2024 Sep 1;12(3):321-327. https://doi.org/10.1016/j.jer.2024.01.013
[149] Husseini M, Latief BH, Khudhair NA, Huseeni MD, Al-Saadi FA. Investigation of Corrosion Inhibition of Carbon Steel by Using Natural Iraqi Plum Tree Gum in a Saline Medium. Iraqi Journal of Science. 2024 Oct 30:5349-5356. https://doi.org/10.24996/ijs.2024.65.10.1
[150] Messali M, Almutairi SM, Ait Mansour A, Salghi R, Lgaz H. Exploring the mechanisms of eco-friendly pyridinium ionic liquids for corrosion inhibition of carbon steel in saline mediums: Unveiling deeper understanding through experimental and computational approaches. Journal of Materials Research and Technology. 2023 Nov 1;27:8292-8307. https://doi.org/10.1016/j.jmrt.2023.11.219
[151] De Ketelaere E, Moed D, Vanoppen M, Verliefde AR, Verbeken K, Depover T. Sodium silicate corrosion inhibition behaviour for carbon steel in a dynamic salt water environment. Corrosion Science. 2023 Jun 1;217:111119. https://doi.org/10.1016/j.corsci.2023.111119
[152] Ekere IE, Agboola O, Fayomi SO, Ayeni AO, Ayodeji A. Investigation of corrosion inhibition by Cassava leaf DNA on AISI 1015 low carbon steel in sodium chloride solution. Int J Corros Scale Inhib. 2023;12:424-437. https://doi.org/10.17675/2305-6894-2023-12-2-3
[153] Al-Mashhadani HA, Alshujery MK, Khazaal FA, Salman AM, Kadhim MM, Abbas ZM, Farag SK, Hussien HF. Anti-corrosive substance as green inhibitor for carbon steel in saline and acidic media. In Journal of Physics: Conference Series. 2021 Mar 1;1818(1):012128. https://doi.org/10.1088/1742-6596/1818/1/012128
[154] Hu J, Xiong Q, Chen L, Zhang C, Zheng Z, Geng S, Yang Z, Zhong X. Corrosion inhibitor in CO2-O2-containing environment: Inhibition effect and mechanisms of Bis (2-ehylhexyl) phosphate for the corrosion of carbon steel. Corrosion Science. 2021 Feb 1;179:109173. https://doi.org/10.1016/j.corsci.2020.109173
[155] Mahalakshmi P, Rajendran S, Nandhini G, Joycee SC, Vijaya N, Umasankareswari T, Renuga DN. Inhibition of corrosion of mild steel in sea water by an aqueous extract of turmeric powder. International Journal of Corrosion and Scale Inhibition. 2020;9(2):706-725. https://doi.org/10.17675/2305-6894-2020-9-2-20
[156] Cotting F, Aoki IV. Octylsilanol and Ce (III) ions–alternative corrosion inhibitors for carbon steel in chloride neutral solutions. Journal of Materials Research and Technology. 2020 Jul 1;9(4):8723-8734. https://doi.org/10.1016/j.jmrt.2020.06.011
[157] Mohammed MA, Kubba RM. Experimental Evaluation for the inhibition of carbon steel corrosion in salt and acid media by new derivative of quinolin-2-one. Iraqi Journal of Science. 2020 Aug 28:1861-1873. http://doi.org/10.24996/ijs.2020.61.8.2
[158] Moreira RR, Soares TF, Ribeiro J. Electrochemical investigation of corrosion on AISI 316 stainless steel and AISI 1010 carbon steel: study of the behaviour of imidazole and benzimidazole as corrosion inhibitors. Advances in Chemical Engineering and Science. 2014 Sep 17;4(4):503-514. http://dx.doi.org/10.4236/aces.2014.44052
[159] Rivera-Grau LM, Casales M, Regla I, Ortega-Toledo DM, Gonzalez-Rodriguez JG, Gomez LM. CO2 Corrosion inhibition by imidazoline derivatives based on coconut oil. International Journal of Electrochemical Science. 2012 Dec 1;7(12):13044-13057. https://doi.org/10.1016/S1452-3981(23)16607-7