[1] Svensson Grape E, Chacón-García AJ, Rojas S, Pérez Y, Jaworski A, Nero M, Åhlén M, MartínezAhumada E, Galetsa Feindt AE, Pepillo M, Narongin-Fujikawa M (2023) Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nat Water 1–10.
https://doi.org/10.1038/s44221-023-00070-z
[2] Khalidi-Idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S (2023) Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. Int J Environ Sci Technol 1–2.
https://link.springer.com/article/10.1007/s13762-023-04867-z
[3] S. Li, C. Zhang, F. Li, T. Hua, Q. Zhou, S.-H. Ho Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: a critical review J. Hazard Mater., 411 (2021), p. 125148.
https://doi.org/10.1016/j.jhazmat.2021.125148
[4] M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman, and D. Mohan, "Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence Effect, and Removal Methods," Chemical Reviews, Vol. 119 (6), pp. 3510-3673, 2019. 10.1021/acs.chemrev.8b00299.
https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00299
[5] Prosenc F, Piechocka J, Škufca D, Heath E, Griessler Bulc T, Istenič D, et al. Microalgae-based removal of contaminants of emerging concern: mechanisms in Chlorella vulgaris and mixed algal-bacterial J Hazard Mater. 2021;418: 126284.
https://doi.org/10.1016/j.jhazmat.2021.126284
[6] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, N.S. Thomaidis, J. Xu Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review.
https://doi.org/10.1016/j.jhazmat.2016.04.045
[7] E.A. Campbell, N. Korzheva, A. Mustaev, K. Murakami, S. Nair, A. Goldfarb, S.A. Darst, "Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase," Cell, Vol. 104 (6), pp. 901-912, 2001.
https://doi.org/10.1016/S0092-8674(01)00286-0
[8] R. Shokri and M. Amjadi, "Boron and nitrogen codoped carbon dots as a chemiluminescence probe for sensitive assay of rifampicin," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 425, p. 113694, 2022.
https://doi.org/10.1016/j.jphotochem.2021.113694.
[9] H. Soni and J. Malik, "Rifampicin as Potent Inhibitor of COVID -19 Main Protease: In-Silico Docking Approach," Saudi Journal of Medical and Pharmaceutical Sciences, Vol. 6, pp. 588-593, 2020. 10.36348/sjmps. 2020. v06i09.001.
https://doi.org/10.24012/dumf.1120755
[10] B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, N.S. Thomaidis, J. Xu Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review J. Hazard. Mater., 323 (2017), pp. 274-.
https://doi.org/10.1016/j.jhazmat.2016.04.045
[11] N.H.Tran, H.J. Chen, M. Reinhard, F.J. Mao, K.Y. Gin Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes Water Res., 104 (2016), pp. 461-472
https://doi.org/10.1016/j.watres.2016.08.040
[12] Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance Environ. Sci. Technol., 49 (2015), pp. 6772-6782.
https://pubs.acs.org/doi/10.1021/acs.est.5b00729
[14] X. Li, Z. Cheng, C. Dang, M. Zhang, Y. Zheng, X. Yu Metagenomic and viromic data mining reveals viral threats in biologically treated domestic wastewater Environ. Sci. Ecotechnol., 7 (2021), p. 100105.
https://doi.org/10.1016/j.ese.2021.100105
[17] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, N.S. Thomaidis, J. Xu Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review.
https://doi.org/10.1016/j.jhazmat.2016.04.045
[18] Saba S.B. Alshididi*, Mahmood K.H. Al-Mashhadani1 and Ibrahim J. Abed (2024 ). Wastewater Treatment by the Cyanobacterium Species: Synechococcus elongatusas Biosorption Material for Pb, Cr and Ni Heavy Metals. Asian Journal of Water, Environment and Pollution, Vol. 21, No. 6 :pp. 111-118. DOI 10.3233/AJW240078.
https://doi.org/10.3233/AJW240078
[20] Makki, M. J., Al-Mashhadani, M. K., & Al-Dawery, S. K. (2023). Removal of ranitidine using chlorella Sorokiniana Iraqi Journal of Chemical and Petroleum Engineering, 24(2), 31-39.
https://doi.org/10.31699/IJCPE.2023.2.4
[21] Hong JW, Kim OH, Jo S, Kim H, Jeong MR, Park KM, et al. Biochemical composition of a Korean domestic microalga Chlorella vulgaris biochemical composition of a Korean domestic microalga Chlorella vulgaris KNUA027. Microbiol Biotechnol Lett. 2016. https:// doi. org/ 10. 4014/ mbl. 1512. 12008.
https://doi.org/10.4014/mbl.1512.12008
[22] Abed, I. J.; Abdulhasan, G. A. and Moushib, L. I. (2019). Molecular and Immunological Methods to Confirm Toxiginicity (Microcystin Production) of Westiellopsis Prolifica Isolated from Tigris River – Iraq, Baghdad Science Journal 16(4).
http://dx.doi.org/10.21123/bsj.2019.16.4(Suppl.).0978
[23] C.
Becker, J.B. Dressman, H.E. Junginger, S. Kopp, K.K. Midha, V.P. Shah, S. Stavchansky, D.M. Barends, "Biowaiver monographs for immediate release solid oral dosage forms: Rifampicin," Journal of Pharmaceutical Sciences https://doi.org/10.1002/jps.21624 Vol. 98 (7), pp. 2252-2267, 2009.
https://doi.org/10.1002/jps.21624
[24] Li K.Q., Li M., He Y.F., Gu X.Y., Pang K., Ma Y.P., Lu D.L. Effects of pH and nitrogen form on Nitzschia closterium growth by linking dynamic with enzyme activity. Chemosphere. 2020;249: 126154. doi: 10.1016/j.chemosphere.2020.126154.
https://doi.org/10.1016/j.chemosphere.2020.126154
[25] Becker, C., Dressman, J. B., Junginger, H. E., Kopp, S., Midha, K. K., Shah, V. P., ... & Barends, D. M. (2009). Biowaiver monographs for immediate release solid oral dosage forms: rifampicin. Journal of pharmaceutical sciences, 98(7), 2252-2267..
https://doi.org/10.1002/jps.21624
[26] Danalıoğlu ST, Bayazit ŞS, Kerkez Kuyumcu O, Salam MA. Efficient removal of antibiotics by a novel magnetic adsorbent: magnetic activated carbon/ chitosan (MACC) nanocomposite. J Mol Liq. 2017 ;240:589–96.
http://dx.doi.org/10.1016/j.molliq.2017.05.131
[27] Babel S, Kurniawan TA. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere. 2004; 54:951–67.
https://doi.org/10.1016/j.chemosphere.2003.10.001
[28] Li N, Wang P, Wang S, Wang C, Zhou H, Kapur S, et al. Electrostatic charges on microalgae surface: mechanism and applications. J Environ Chem Eng. 2022;10: 107516.
https://doi.org/10.1016/j.jece.2022.107516
[29] Vandekerckhove, T. G., Kobayashi, K., Janda, J., Van Nevel, S., & Vlaeminck, S. E. (2018). Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost. Bioresource technology, 257, 266-273.
https://doi.org/10.1016/j.biortech.2018.02.047
[30] Jaiswal, K. K., Kumar, V., Verma, R., Verma, M., Kumar, A., Vlaskin, M. S., ... & Kim, H. (2021). Graphitic bio-char and bio-oil synthesis via hydrothermal carbonization-co-liquefaction of microalgae biomass (oiled/de-oiled) and multiple heavy metals remediations. Journal of Hazardous Materials, 409, 124987.
https://doi.org/10.1016/j.jhazmat.2020.124987
[32] Magdalini Tsarpali,John N. Kuhn andGeorge P. Philippidis Hydrothermal Carbonization of Residual Algal Biomass for Production of Hydrochar as a Biobased Metal Adsorbent Journal: Sustainability, 2022 Volume: 14 Number: 455.
https://doi.org/10.3390/su14010455
[33] Xu, X., Li, H., Wang, D., & Wang, J. (2020). “Biosorption of antibiotics from aqueous solutions using macroalgae: Kinetics, equilibrium and thermodynamics.” Chemical Engineering Journal, 390, 124541.
https://doi.org/10.31699/IJCPE.2023.4.1
[34] Li, Z., Zhang, L., Chen, C., & Zhao, X. (2019). “Influence of biomass dosage on the removal efficiency and adsorption capacity of pollutants in aqueous solutions.” Environmental Science and Pollution Research, 26(24), 24356–24367.
1016/j.chemosphere.2014.12.058
[35] Li Y, Du Q, Liu T, Sun J, Jiao Y, Xia Y et al (2012) Equilibrium, [33] kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47(8):1898–190.4
1016/j.materresbull.2012.04.021
[36] Zeng Z, Tan X, Liu Y, Tian S, Zeng G, Jiang L, Liu S, Li J, Liu N, Yin Z (2018) Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures. Frontiers in Chemistry 6:80–81.
https://doi.org/10.3389/fchem.2018.00080
[37] Chen Y, Zou C, Mastalerz M, Hu S, Gasaway C, Tao X. Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review. Int J Mol Sci. 2015; 16:30223–50.
https://doi.org/10.3390/ijms161226227
[38] Mecozzi M, Pietroletti M, Scarpiniti M, Acquistucci R, Conti ME. Monitoring of marine mucilage formation in Italian seas investigated by infrared spectroscopy and independent component analysis. Environ Monit Assess. 2012;184:6025–36.
1007/s10661-011-2400-4
[39] Koochi ZH, Jahromi KG, Kavoosi G, Ramezanian A. Fortification of
Chlorella vulgaris with citrus peel amino acid for improvement biomass and protein quality. Biotechnol Rep. 2023;39: e00806.
1016/j.btre.2023.e00806
[40] Singh S, Verma E, Niveshika N, Tiwari B, Mishra AK. Exopolysaccharide production in
Anabaena PCC 7120 under different CaCl2 regimes. Physiol Mol Biol Plant. 2016; 22:557–66.
10.1007/s12298-016-0380-0
[42] Zhang, J., Yang, W., Li, Z., Huang, F., & Zhang, K. (2023). Multigenerational exposure of cadmium trans-generationally impairs locomotive and chemotactic behaviors in Caenorhabditis elegans. Chemosphere, 325, 138432.
https://doi.org/10.1016/j.chemosphere.2023.138432
[43] Yan, W., Qian, T., Zhang, L., Wang, L., & Zhou, Y. (2021). Interaction of perfluorooctanoic acid with extracellular polymeric substances-Role of protein. Journal of hazardous materials, 401,
https://doi.org/10.1016/j.jhazmat.2020.123381
[44] Vandekerckhove, T. G., Kobayashi, K., Janda, J., Van Nevel, S., & Vlaeminck, S. E. (2018). Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost. Bioresource technology, 257, 266-273.
https://doi.org/10.1016/j.biortech.2018.02.047