[1] Wang, Y. N., Xu, Y. Y., Li, Y. W., Zhao, Y. L. and Zhang, B. J. (2003). “Heterogeneous modeling for fixed bed reactor for Fischer-Tropsch synthesis: Reactor model and its applications.” Chemical Engineering Science, Vol. 58, PP. 867-875.
[2] Anastai, J. L. (1980). “SASOL: South Africa’s oil from coal story - background for environmental assessment.” U.S. EPA report 600/8-80-002.
[3] Sie, S. T. and Krishna, R. (1999). “Fundamentals and selection of advanced Fischer–Tropsch reactors.” Applied Catalysis A: General, Vol. 186, PP. 55-70.
[4] Jess, A. and Kern, C. (2009). “Modeling of multi-tubular reactors for Fischer-Tropsch synthesis.” Chemical Engineering Technology, Vol. 32, PP. 1164-1175.
[5] Rafiq, M. H., Jakobsen, H. A., Schmid, R. and Hustad, J. E. (2011). “Experimental studies and modeling of a fixed bed reactor for Fischer-Tropsch synthesis using biosyngas.” Fuel Processing Technology, Vol. 92, PP. 893-907.
[6] Fernandes, F. A. N. and Teles, U. M. (2007). “Modeling and optimization of Fischer–Tropsch products hydrocracking.” Fuel Processing Technology, Vol. 88, PP. 207-214.
[7] Fernandes, F. A. N. (2005). “Polymerization kinetics of Fischer-Tropsch reaction on iron-based catalyst and product grade optimization.” Chemical Engineering Technology, Vol. 28, PP. 930-938.
[8] Wang, Y., Fan, W., Liu, Y., Zeng, Z., Hao, X., Changa, M., Zhang, C., Xu, Y., Xiang, H. and Li, Y. (2008). “Modeling of the Fischer–Tropsch synthesis in slurry bubble column reactors.” Chemical Engineering and Processing, Vol. 47, PP. 222–228.
[9] Schweitzer, J. M. and Viguié, J. C. (2009). “Reactor modeling of a slurry bubble column for Fischer-Tropsch synthesis.” Oil & Gas Science and Technology, Vol. 64, PP. 63-77.
[10] Fernandes, F. A. N. (2006). “Modeling and product grade optimization of Fischer-Tropsch synthesis in a slurry reactor.” Industrial Engineering & Chemistry Research, Vol. 45, PP. 1047-1057.
[11] Sehabiague, L., Lemoine, R., Behkish, A., Heintz, Y. J., Sanoja, M., Oukaci, R. and Morsi, B. I. (2008). “Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000 bbl/day of Fischer-Tropsch liquid hydrocarbons.” Journal of the Chinese Institute of Chemical Engineers, Vol. 39, PP. 169-179.
[12] Wang, Y. N., Ma, W. P., Lu, Y. J., Yang, J., Xu, Y. Y., Xiang, H. W., Li, Y. W., Zhao, Y. L. and Zhang, B. J. (2003). “Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst.” Fuel, Vol. 82, PP. 195-213.
[13] Froment, G. F. and Bischoff, K. B. (1979). Chemical reactor analysis and design. 1st Ed. John Wiley & Sons, New Jersey, USA.
[14] Steynberg, A. P. and Dry, M. E. (2004). In Studies in Surface Science and Catalysis: Fischer-Tropsch Technology. 1st Ed. Elsevier, Amsterdam, Netherlands.
[15] Holman, J. P. (1997). Heat transfer. 8th Ed. McGraw Hill, USA.
[16] Megyesy, E. F. (2001). Pressure Vessel Handbook. 12th Ed. Pressure Vessel Publishing, Tulsa, Oklahoma, USA.
[17] Ludwig, E. E. (1990). Applied process design for chemical and petrochemical plants. Vol 3, 3rd Ed. Gulf Professional Publishing, Oxford, United Kingdom.
[18] Holland, J. H. (1975). Adaptation in natural and artificial systems. 1st Ed. University of Michigan Press, Ann Arbor, USA.
[19] Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. 1st Ed. Addison Wesley, Boston, USA.
[20] Hwang, S. and He, R. (2006). “A hybrid real-parameter genetic algorithm for function optimization.” Advanced Engineering Informatics, Vol. 20, PP. 7-21.
[21] Haupt, R. L. and Haupt, S. E. (2004). Practical genetic algorithms. 2nd Ed. John-Wiley & Sons, New Jersey, USA.