[1] Zhang, Z. and Ghassemi, A. (2011). "Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds." Int. J. for Numerical and Analytical Methods in Geomechanics, 35(4): pp.480-495.
[2] Weng, X., Kresse, O., Cohen, C., Wu, R. and Gu, H. (2011). "Modeling of Hydraulic Fracture Network Propagation in a Naturally Fractured Formation." Paper SPE 140253 presented at SPE hydraulic fracturing technology conference and exhibition. The Woodlands, Texas, USA, 24 26 January.
[3] Fisher, M.K., Wright, C.A., Davidson, B.M., Goodwin, A.K., Fielder, E.O., Bucckler, W.s. and Steinsberger, N.P. (2005). "Integrating Fracture- Mapping Technologies to Improve Stimulations in the Barnett Shale." SPE prod and Fac., pp. 85-93.
[4] Freund, L.B. (1990). "Dynamic fracture mechanics." Cambridge University Press.
[5] Laubach, S. E., Olson, J. E. and Gale, J. (2004). "Are open fractures necessarily aligned with maximum horizontal stress?" Earth & Planetary Science Letters, V. 222 (1), pp.191-195.
[6] Hallam, S.D. and Last, N.C. (1991). "Geometry of hydraulic fractures from modestly deviated wellbores." J. Pet. Technol., Vol. 43, pp. 742-748.
[7] Mack, M.G. and Warpinkski, N.R. (2000). Mechanics of Hydraulic Fracturing.chapter 6 in M.J. Economides, and K.G. Nolte, Reservoir Stimulation.3th.Ed. Wiley Publishers, 750 pp.
[8] Evans, K.F. (2005). "Permeability creation and damage due to massive fluid injections into granite at 3, 5 kmatSoultz: 2. Crit. stress fracture strength." J. Geophys. Res. 110, B04204.
[9] Cornet, F.H., Bérard, T. and Bourouis, S. (2007). "How close to failure is a granite rock mass at a5 km depth?" Int. J. Rock Mech. Min. Sci. 44 (1), pp. 47–66.
[10] Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F. and Baumgrtner, J. (1997). "Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength." J. Geophys. Res. 102, pp. 18453–18475.
[11] Zoback, M.D., Barton, C.A., Brudy, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R., Moos, D.B., Peska, P., Ward, C.D. and Wiprut, D.J. (2003). "Determination of stress orientation and magnitude in deep wells." .Int. J. Rock Mech. Min. Sci. 40, pp. 1049–1076.
[12] Haimson, B. (2007). "Micromechanisms of borehole instability leading to breakouts in rocks." .Int. J. Rock Mech. Min. Sci. vol. 44, pp. 157–173.
[13] Shapiro, S.A., Huenges, E. and Borm, G. (1997). "Estimating the crust permeability from fluid injection-induced seismic emission at the KTB site." Geophys. J. Int. 132, F15–F18.
[14] Baisch, S. and Harjes, H.-P. (2003). "A model for fluid-injection-induced seismicity at the KTB, Germany." Bull. Seismol. Soc. Am. 152 (1), pp. 160–170.
[15] Bohnhoff, M., Baisch, S. and Harjes, H.-P. (2004). "Fault mechanisms of induced seismicity at the super deep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field." J. Geophys. Res. 109, B02309.doi:10.1029/200.
[16] Michelet, S. and Toksöz, M.N. (2007). "Fracture mapping in the Soultz-sous-Forêtsgeo thermal field using microearthquake locations." J. Geophys. Res. 112, B07315. doi:10.1029/2006JB004442.
[17] Zoback, M.D. and Harjes, H.-P. (1997). "Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site." Germany. J. Geophys. Res. 102, pp. 18477–18491.
[18] Legarth, B., Tischner, T. and Huenges, E. (2003). "Stimulation experiments in sedimentary, low-enthalpy reservoirs for geothermal power generation." Germany. Geothermics32 (4–6), pp. 487–495.
[19] Legarth, B., Huenges, E. and Zimmermann, G. (2005). “Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications." .Int. J. Rock Mech. Min. Sci. 42, 1028–1041.