Development of Hydrate Formation Phase Envelope: An Experimental Approach in One of the Iranian Gas Reservoirs

Document Type: paper

Authors

1 Department of Petroleum Engineering, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

2 Department of Planning, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

3 Transport Phenomena & Nanotechnology Laboratory, Department of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Iran's proved natural gas reserves are the world's second largest reserves. Mainly, because of different climate changes and different reservoirs characterizations, studying the behavior of producing outcome fluids and their transportation, is of major interest. One of the main problems occur in the gas reservoirs is related to the hydrate formation while producing from a well, either in production strings or lines (before and after choke). Effective parameters which lead to hydrate formations are: high pressure in strings, low wellhead temperature together with water presence; and hence, the high possibility of having this phenomenon in the reservoirs is quite obvious for the gas wells. Hydrate formation in production lines and facilities will also lead to different impediments such as: complete or partial closure in production lines and heat exchangers, erosion of the equipment, pressure reduction, and etc. In this research, the conditions of hydrate formation, using the experimental data from one the Iranian sour gas field that is helpful to determine the safe/unsafe zones by P-T curves, are thoroughly investigated. In addition, the results will be compared to the other presented correlations available in the literature.  

Keywords


[1] Davy, H. (1811). “On a combination of oxymuriatic gas and oxygen gas.” Philos. T. Roy. Soc. of London, Vol. 101, pp. 155-162.

[2] Faraday, M. and Davy, H. (1823).   “On fluid chlorine.” Philos. T. Roy. Soc. of  London, Vol. 113, pp. 160-165.

[3] Hammerschmidt, E.G. (1934). “Formation of gas hydrates in natural gas  transmission lines.” Ind. Eng. Chem., Vol. 26, No. 8, pp. 851-855.

[4] Deaton, W.M. and Frost, E.M. (1946). “Gas hydrates and their relation to the operation of natural gas  pipelines.” United  States Department of the Interior  - Bureau of Mines, Monograph 8, 110 pages.

[5] Stern, L.A., Kirby, S.H., Durham, W.B., Circone, S. and Waite, W. F. (2000). “Laboratory synthesis of pure methane hydrate suitable for measurement of physical  properties and decomposition  behavior.” Max,  M.  D.  (Ed.),  In Coastal Systems and Continental Margins—Natural gas Hydrate in Oceanic and Permafrost   Environments,  Kluwer Academic Publishers: Dordrecht, Netherlands, Vol. 5, pp. 323–348.

[6] Winters, W.J., Dillon, W.P., Pecher, I.A. and Mason, D.H. (2000). “Determining physical properties of sediment containing natural and laboratory-formed gas hydrate.” Max, M. D. (Ed.), In: Coastal Systems and Continental Margins—Natural gas Hydrate in Oceanic and Permafrost Environments, Kluwer Academic Publishers: Dordrecht, Netherlands, Vol. 5, pp. 311–322.

[7] Wright, J.F., Dallimore, S.R. and Nixon, F.M. (1999). “Influence of grain size and salinity on pressure-temperature thresholds for methane hydrate stability in  JAPEX/JNOC/GSC Mallik   2L-38   gas   hydrate  research-well   sediments.”   In:   Scientific Results from JAPEX/JNOC/GSC   Mallik   2L-38   Gas   Hydrate   Research   Well,  Mackenzie   Delta, Northwest Territories, Canada, Geological Survey of Canada, Vol. 544, pp. 229–240.

[8] Winters, W.J., Dillon, W.P., Pecher, I.A. and Mason, D.H. (2000). “Determining physical properties of sediment containing natural and laboratory-formed gas hydrate.”  Max, M. (Ed.), In: Natural Gas Hydrate in Oceanic and Permafrost Environments, Dordrecht, The Netherlands: Kluwer Academic Publishers, April 16-19, pp. 311-322.

[9] Winters,  W.J.,  Pecher,  I.A.,  Booth,  J.S., Mason,  D.H.,  Relle,  M.K.  and  Dillon,  W.P. (1999). “Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI).” Dallimore, S.R., Uchida, T. and Collett, T.S. (Eds.), In: Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada, Geological Survey of Canada Bulletin, Vol. 544, pp. 241-250.

[10] Rogers, R.E. and  Lee, M.S. (2001). “Biosurfactant  from microbial activity in  ocean sediments enhances gas hydrate formation.” Presented at the Geological Society  Earth System Processes- Global Meeting, Sponsored jointly by the Geological Society of London and Geological Society of America, Edinburgh, Scotland, June 24-28.

[11] Berge, L.I., Jacobsen, K.A. and Solstad, A. (1999). “Measured acoustic wave velocities of R11  (CCl3F)   hydrate  samples  with  and  without  sand  as  a   function  of   hydrate concentration.” J. Geophys. Res., Vol. 104, No. B7, pp. 15415-15424.

[12] Tohidi, B., Anderson, R., Clennell, M.B., Burgass, R.W. and Biderkab, A.B.  (2001). “Visual observation of gas-hydrate formation and dissociation in synthetic  porous media by means of glass micromodels.” Geol., Vol.  29, No. 9, pp. 867–870.

[13] Collett, T.S., Godbole, S.P. and Economides, C. (1984). “Quantification of in-situ  gas hydrates with well logs.” Annu. Tech. Meeting, Jun 10-13, Calgary, Alberta.

[14] Collett, T.S., Lee, M.W., Dallimore, S.R. and Agena, W.F. (1999). “Seismic- and well- log-inferred gas hydrate accumulations on Richards Island.”  Dallimore, S.R., Uchida, T. and Collett, T.S. (Eds.), In: Scientific results from JAPEX/JNOC/GSC MaIHk 2L-38 gas hydrate research well, Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada Bulletin, Vol. 544, pp. 357-376.

[15] Collett, T.S. and Ladd, J. (2000). “Detection of gas hydrate with downhole logs  and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data.” Paull, C.K., Matsumoto, R., Wallace, P.J. and Dillon, W.P. (Eds.), In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164, pp. 179-191.

[16] Miyairi, M., Akihisa, K., Uchida, T., Collett, T.S. and Dallimore, S.R. (1999). “Well-log interpretation of gas hydrate-bearing formations in the JAPEX/JNOC/GSC Mallik 2L-38 gas  hydrate  research  well.” Dallimore,  S.R.,  Uchida,  T.  and  Collett,  T.S.  (Eds.),  In: Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate  Research Well, Mackenzie Delta, Northwest Territories, Canada, Geological Survey of Canada Bulletin, Vol. 544, pp. 281-293.

[17]  Lee,   M.W.   and   Collett, T.S.   (1999).   “Amount   of   gas   hydrate  estimated   form compressional and  shear wave  velocities at  the JAPEX/JNOC/GSC Mallik  2L-38  gas hydrate research well.” Dallimore, S.R., Uchida, T. and Collett, T.S. (Eds.), In: Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research  Well, Macenzie Delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin, Vol. 554, pp. 313-322.

[18]  Sakai,  A.  (1999).  “Velocity  analysis  of  vertical  seismic  profile (VSP)  survey  at JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well,  and related problems  for estimating gas hydrate concentration.” Geological Survey of Canada Bulletin, Report: 544, pp. 323–340.

[19] Waite, W.F., Winters, W.J. and Mason, D.H. (2004). “Methane hydrate formation  in partially water-saturated Ottawa sand.” Am. Mineral., Vol. 89, No. 8-9, pp. 1202-1207.

[20] Baillie, C. and Wichert, E. (1987). “Chart gives hydrate formation temperature for natural gas.” Oil  Gas J., Vol. 85, No. 4, pp. 37–39.

[21] Wilcox, W.I., Carson, D.B. and Katz, D.L. (1941). “Natural gas hydrates.” Ind. Eng.Chem., Vol. 33, pp. 662–671.

[22] Carroll,  J.J.  and  Duan,  J.  (2002).  “Relational  expression  of  the conditions  forming hydrates of various components in natural gas.” Nat. Gas Industry, Vol. 22, No. 2, pp. 66–71.

[23] Carson, D.B. and Katz, D.L. (2008). “Natural gas hydrates.” Trans. AIME, Vol. 146, pp. 150–158.

[24] Sloan, E.D. and Koh, C.A. (2008). “Clathrate hydrates of natural gases.” 3rd edition, CRC Press is an imprint of the Taylor & Frances Group, New York.

[25] Elgibaly  A.A.  and  Elkamel  A.M.  (1998).  “A new  correlation  for predicting  hydrate formation conditions for various gas mixtures and inhibitors.” Fluid Phase Equilibr., Vol. 152, No. 1, pp. 23-42.

[26] Motiee, M. (1991). “Estimate possibility of hydrate.” In: Hydrological Proceeding, pp. 98- 99.

[27] Stergaard, K.K., Tohidi, B., Danesh, A., Todd, A.C. and Burgass, R.W. (2000).  “A general  correlation  for  predicting  the  hydrate-free  zone  of  reservoir  fluids.”   SPE Production & Facilities, Vol. 15, No. 4, pp. 228-233.

[28] Towler, B.F. and Mokhatab, S. (2005). “Quickly estimate hydrate formation conditions in natural gases.” In: Hydrocarbon Processing (International edition), Vol. 84, No. 4, pp. 61-2.

[29] Ng, H.-J. and Robinson, D.B. (1976). “The role of n-butane in hydrate formation.” AIChE J., Vol. 22, No. 4, pp. 656-661.

[30] Zhang,  S.-X.,  Chen  G.-J.,  Ma  C.-F.,  Yang  L.-Y.  and  Guo  T.-M. (2000).  “Hydrate formation of hydrogen + hydrocarbon gas mixtures.” J. Chem. Eng. Data, Vol. 45, No. 5, pp. 908-911.

[31] Mei,  D.-H.,  Liao,  J.,  Yang,  J.-T.  and  Guo,  T.-M.  (1998).  “Hydrate formation  of  a synthetic natural gas mixture in aqueous solutions containing electrolyte, methanol,  and (Electrolyte _ Methanol).” J. Chem. Eng. Data, Vol. 43, No. 2, pp. 178-182.

[32] Fan, S.-S. and Guo, T.-M. (1999). “Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions.” J. Chem. Eng. Data, Vol. 44, No. 4, pp. 829-832.

[33] Carroll, J.J. (2004). “An examination of the prediction of hydrate formation conditions in sour natural gas.” GPA Europe, Dublin, Ireland; May 19-21.

[34] Noaker,  L.J.  and  Katz,  D.L.  (1954).  “Gas  hydrates  of  hydrogen  sulfide-methane mixtures.”, J. Petrol. Technol., Vol. 6, No. 9, pp. 135-137.

[35] Robinson,  D.B.  and  Hutton,  J.M.  (1967).  “Hydrate  formation  in  systems  containing methane, hydrogen sulphide and carbon dioxide.” J. Can. Petro. Tech., Vol. 6, pp. 6-9.

36- Sun, C.-Y., Chen, G.-J., Lin, W. and Guo, T.-M. (2003). “Hydrate formation conditions of sour natural gases.” J. Chem. Eng. Data, Vol. 48, No. 3, pp. 600-602.

[37] Tohidi,  B.,  Danesh,  A.,  Burgass,  R.W.  and  Todd,  A.C.  (1996). “Measurement  and prediction of hydrate-phase equilibria for reservoir fluids.” SPE Production & Facilities, Vol. 11, No. 2, pp. 69-76.

[38] Tohidi, B., Danesh, A. and Todd, A. (1997). “Predicting pipeline hydrate formation.” Chem. Eng., No. 642, pp. 32-7.

[39] Stiff, H.A. (1951) “The interpretation of chemical water analysis by means of patterns.” J. Petrol. Technol., Vol. 3, No. 10, pp. 15-17.