Mohadesi, M., Moradi, G., Mousavi, H. (2014). Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network. Journal of Chemical and Petroleum Engineering, 48(1), 27-45. doi: 10.22059/jchpe.2014.5584

Majid Mohadesi; Gholamreza Moradi; Hosnie-Sadat Mousavi. "Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network". Journal of Chemical and Petroleum Engineering, 48, 1, 2014, 27-45. doi: 10.22059/jchpe.2014.5584

Mohadesi, M., Moradi, G., Mousavi, H. (2014). 'Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network', Journal of Chemical and Petroleum Engineering, 48(1), pp. 27-45. doi: 10.22059/jchpe.2014.5584

Mohadesi, M., Moradi, G., Mousavi, H. Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network. Journal of Chemical and Petroleum Engineering, 2014; 48(1): 27-45. doi: 10.22059/jchpe.2014.5584

Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network

^{}Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran

Abstract

In this study, the use of the three-layer feed forward neural network has been investigated for estimating of infinite dilute diffusion coefficient ( D_{12} ) of supercritical fluid (SCF), liquid and gas binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, critical pressure, critical volume, normal boiling point, molecular volume in normal boiling point, molecule diameter, Lennard-Jones’s (LJ) energy parameter, temperature and pressure. For each set of SCF, liquid and gas systems a three-layer network has been applied with training algorithm of Levenberg-Marquard (LM). The obtained results of models have shown good accuracy of artificial neural network (ANN) for estimating infinite dilute diffusion coefficient of SCF, liquid and gas binary systems with mean relative error (MRE) of 2.88 % for 231 systems containing 4078 data points (mean relative error for ANN model in SCF, liquid and gas binary systems are 3.00, 2.99 and 1.21 %, respectively)

[1] Reid, R.C., Prausnitz, J. M. and Poling, B.E. (2001). The Properties of Gases and Liquids. 5th. Ed. McGrawHill Pub. Co., New York.

[2] Magalhaes, A.L., Da Silva, F.A. and Silva, C.M. (2011). “New models for tracer diffusion coefficients of hard sphere and real systems: Application to gases, liquids and supercritical fluids.” J. Supercrit. Fluids, Vol. 55, pp. 898–923.

[3] Bhat, N. and McAvoy, T.J. (2000). “Use of neural nets for dynamic modeling and control of chemical process systems.” Comput. Chem. Eng., Vol. 14, pp. 573-583.

[4] Pollard, J.F., Broussard, M.R., Garrison, D.B. and San, K.Y. (1992). “Process identification using neural networks.” Comput. Chem. Eng., Vol. 16, pp. 253-270.

[5] Psichogios, D.C. and Ungar, L.H. (1992). “A hybrid neural network-first principles approach to process modeling.” AIChE J., Vol. 38, pp. 1499-1511.

[6] Wang, H., Oh, Y. and Yoon, E.S. (1998). “Strategies for modeling and control of nonlinear chemical processes using neural networks.” Comput. Chem. Eng., Vol. 22, pp. 823-826.

[7] Molga, E. and Cherbanski, R. (1999). “Hybrid first-principle-neural network approach to modeling of the liquid-liquid reacting system.” Chem. Eng. Sci., Vol. 54, pp. 2467-2473.

[8] Fissore, D., Barresi, A.A. and Manca, D. (2004). “Modeling of methanol synthesis in a network of forced unsteady-state ring reactors by artificial neural networks for control purposes.” Chem. Eng. Sci., Vol. 59, pp. 4033-4041.

[9] Kito, S., Satsuma, A., Ishikura, T., Niwa, M., Murakami, Y. and Hattori, T. (2004). “Application of neural network to estimation of catalyst deactivation in methanol conversion.” Catal. Today, Vol. 97, pp. 41-47.

[10] Papadokonstantakis, S., Machefer, S., Schnitzleni, K. and Lygeros, A.I. (2005). “Variable selection and data pre-processing in NN modeling of complex chemical processes.” Comput. Chem. Eng., Vol. 29, pp. 1647-1659.

[11] Omata, K., Nukai, N. and Yamada, M. (2005). “Artificial neural network aided design of a stable Co-MgO catalyst of high-pressure dry reforming of methane.” Ind. Eng. Chem. Res., Vol. 44, pp. 296-301.

[12] Himmelblau, D., (2008). “Accounts of experiences in the application of artificial neural networks in chemical engineering.” Ind. Eng. Chem. Res., Vol. 47, pp. 5782-5796.

[13] Eslamloueyan, R. and Khademi, M.H. (2009). “Estimation of thermal conductivity of pure gases by using artificial neural networks.” Int. J. Thermal Sci., Vol. 48, pp. 1094–1101.

[14] Eslamloueyan, R. and Khademi, M.H. (2009). “Using artificial neural networks for estimation of thermal conductivity of binary gaseous mixtures.” J. Chem. Eng. Data, Vol. 54, pp. 922–932.

[15] Eslamloueyan, R. and Khademi, M.H. (2010). “A neural network-based method for estimation of binary gas diffusivity.” Chemom. Intell. Lab. Syst., Vol. 104, pp. 195–204.

[16] Sun, C.K.J. and Chen, S.H. (1985). “Diffusion of benzene, toluene, naphthalene, and Phenanthrene in supercritical dense 2,3-dimethylbutane.” AIChE J., Vol. 31, pp. 1904–1910.

[17] Suarez-Iglesias, O., Medina, I., Pizarro, C. and Bueno, J.L. (2007). “Diffusion coefficients of 2-fluoroanisole, 2-bromoanisole, allylbenzene and 1,3-divinylbenzene at infinite dilution in supercritical carbon dioxide.” Fluid Phase Equilib., Vol. 260, pp. 279–286.

[18] Pizarro, C., Suarez-Iglesias, O., Medina, I. and Bueno, J.L. (2009). “Binary diffusion coefficients for 2,3- dimethylaniline, 2,6-dimethylaniline, 2-methylanisole, 4-methylanisole and 3-nitrotoluene in supercritical carbon dioxide.” J. Supercrit. Fluids, Vol. 48, pp. 1–8.

[19] Kong, C.Y., Withanage, N.R.W., Funazukuri, T. and Kagei, S. (2006). “Binary diffusion coefficients and retention factors for γ-linolenic acid and its methyl and ethyl esters in supercritical carbon dioxide.” J. Supercrit. Fluids, Vol. 37, pp. 63–71.

[20] Funazukuri, T., Hachisu, S. and Wakao, N. (1991). “Measurements of binary diffusion coefficients of C16– C24 unsaturated fatty acid methyl esters in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 30, pp. 1323–1329.

[21] Yang, Y.N. and Matthews, M.A. (2001). “Diffusion of chelating agents in supercritical CO2 and a predictive approach for diffusion coefficients.” J. Chem. Eng. Data, Vol. 46, pp. 588–595.

[22] Gonzalez, K.M., Bueno, J.L. and Medina, I. (2002). “Measurement of diffusion coefficients for 2- nitroanisole, 1,2-dichlorobenzene and tert-butylbenzene in carbon dioxide containing modifiers.” J. Supercrit. Fluids, Vol. 24, pp. 219–229.

[23] Pizarro, C., Suarez-Iglesias, O., Medina, I. and Bueno, J.L. (2007). “Using supercritical fluid chromatography to determine diffusion coefficients of 1,2-diethylbenzene, 1,4-diethylbenzene, 5-tert-butylm-xylene and phenylacetylene in supercritical carbon dioxide.” J. Chromatogr., A, Vol. 1167, pp. 202–209.

[24] Sassiat, P.R., Mourier, P., Caude, M.H. and Rosset, R.H. (1987). “Measurement of diffusion coefficients in supercritical carbon dioxide and correlation with the equation of Wilke and Chang.” Anal. Chem., Vol. 59, pp. 1164–1170.

[25] Gonzalez, L.M., Suarez-Iglesias, O., Bueno, J.L., Pizarro, C. and Medina, I. (2007). “Limiting binary diffusivities of aniline, styrene, and mesitylene in supercritical carbon dioxide.” J. Chem. Eng. Data, Vol. 52, pp. 1286–1290.

[26] Kong, C.Y., Takahashi, N., Funazukuri, T. and Kagei, S. (2007). “Measurements of binary diffusion coefficients and retention factors for dibenzo-24-crown-8 and 15-crown-5 in supercritical carbon dioxide by chromatographic impulse response technique.” Fluid Phase Equilib., Vol. 257, pp. 223–227.

[27] Pizarro, C., Suarez-Iglesias, O., Medina, I. and Bueno, J.L. (2008). “Diffusion coefficients of nbutylbenzene, n-pentylbenzene, 1-phenylhexane, 1-phenyloctane, and 1-phenyldodecane in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 47, pp. 6783–6789.

[28] Pizarro, C., Suarez-Iglesias, O., Medina, I. and Bueno, J.L. (2008). “Molecular diffusion coefficients of phenylmethanol, 1-phenylethanol, 2-phenylethanol, 2-phenyl-1-propanol, and 3-phenyl-1-propanol in supercritical carbon dioxide.” J. Supercrit. Fluids, Vol. 43, pp. 469–476.

[29] Kong, C.Y., Funazukuri, T. and Kagei, S. (2006). “Binary diffusion coefficients and retention factors for polar compounds in supercritical carbon dioxide by chromatographic impulse response method.” J. Supercrit. Fluids, Vol. 37, pp. 359–366.

[30] Gonzalez, L.M., Bueno, J.L. and Medina, I. (2001). “Determination of binary diffusion coefficients of anisole, 2,4-dimethylphenol, and nitrobenzene in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 40, pp. 3711–3716.

[31] Funazukuri, T., Kong, C.Y. and Kagei, S. (2000). “Infinite-dilution binary diffusion coefficients of 2- propanone, 2-butanone, 2-pentanone, and 3-pentanone in CO2 by the Taylor dispersion technique from 308.15 to 328.15K in the pressure range from 8 to 35 MPa.” Int. J. Thermophys., Vol. 21, pp. 1279–1290.

[32] Pizarro, C., Suarez-Iglesias, O., Medina, I. and Bueno, J.L. (2009). “Binary diffusion coefficients of 2-ethyltoluene, 3-ethyltoluene, and 4-ethyltoluene in supercritical carbon dioxide.” J. Chem. Eng. Data, Vol. 54, pp. 1467–1471.

[33] Suarez-Iglesias, O., Medina, I., Pizarro, C. and Bueno, J.L. (2007). “Diffusion of benzyl acetate, 2- phenylethyl acetate, 3-phenylpropyl acetate, and dibenzyl ether in mixtures of carbon dioxide and ethanol.” Ind. Eng. Chem. Res., Vol. 46, pp. 3810–3819.

[34] Funazukuri, T., Kong, C.Y. and Kagei, S. (2003). “Binary diffusion coefficient, partition ratio, and partial molar volume for docosahexaenoic acid, eicosapentaenoic acid and γ-linolenic acid at infinite dilution in supercritical carbon dioxide.” Fluid Phase Equilib., Vol. 206, pp. 163–178.

[35] Han, Y.S., Yang, Y.W. and Wu, P.D. (2007). “Binary diffusion coefficients of Arachidonic acid ethyl ester, cis-5,8,11,14,17-eicosapentaenoic acid ethyl ester, and cis-4,7,10,13,16,19-docosahexanenoic acid ethyl esthers in supercritical carbon dioxide.” J. Chem. Eng. Data, Vol. 52, pp. 555–559.

[36] Funazukuri, T., Kong, C.Y. and Kagei, S. (2000). “Binary diffusion coefficients of acetone in carbon dioxide at 308.2 and 313.2K in the pressure range from 7.9 to 40 MPa.” Int. J. Thermophys., Vol. 21, pp. 651–669.

[37] Kong, C.Y., Funazukuri, T. and Kagei, S. (2004). “Chromatographic impulse response technique with curve fitting to measure binary diffusion coefficients and retention factors using polymer-coated capillary columns.” J. Chromatogr., A, Vol. 1035, pp. 177–193.

[38] Shenai, V.M., Hamilton, B.L. and Matthews, M.A. (1993). “Diffusion in liquid and supercritical fluid mixtures.” ACS Symp. Ser., Vol. 514, pp. 92–103.

[39] Silva, C.M., Filho, C.A., Quadri, M.B. and Macedo, E.A. (2004). “Binary diffusion coefficients of α-pinene and β-pinene in supercritical carbon dioxide.” J. Supercrit. Fluids, Vol. 32, pp. 167–175.

[40] Funazukuri, T., Kong, C.Y., Kikuchi, T. and Kagei, S. (2003). “Measurements of binary diffusion coefficient and partition ratio at infinite dilution for linoleic acid and arachidonic acid in supercritical carbon dioxide.” J. Chem. Eng. Data, Vol. 48, pp. 684–688.

[41] Funazukuri, T., Kong, C.Y. and Kagei, S. (2003). “Binary diffusion coefficients, partition ratios and partial molar volumes at infinite dilution for β-carotene and α-tocopherol in supercritical carbon dioxide.” J. Supercrit. Fluids, Vol. 27, pp. 85–96.

[42] Funazukuri, T., Kong, C.Y., Murooka, N. and Kagei, S. (2000). “Measurements of binary diffusion coefficients and partition ratios for acetone, phenol, α-tocopherol, and β-carotene in supercritical carbon dioxide with a poly (ethylene glycol)-coated capillary column.” Ind. Eng. Chem. Res., Vol. 39, pp. 4462–4469.

[43] Funazukuri, T., Kong, C.Y. and Kagei, S. (2002). “Measurements of binary diffusion coefficients for some low volatile compounds in supercritical carbon dioxide by input-output response technique with two diffusion columns connected in series.” Fluid Phase Equilib., Vol. 194, pp. 1169–1178.

[44] Liong, K.K., Wells, P.A. and Foster, N.R. (1991). “Diffusion coefficients of long-chain esters in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 30, pp. 1329–1335.

[45] Liong, K.K., Wells, P.A. and Foster, N.R. (1992). “Diffusion of fatty acid esters in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 31, pp. 390–399.

[46] Filho, C.A., Silva, C.M., Quadri, M.B. and Macedo, E.A. (2002). “Infinite dilution diffusion coefficients of linalool and benzene in supercritical carbon dioxide.” J. Chem. Eng. Data, Vol. 47, pp. 1351–1354.

[47] Bueno, J.L., Suárez, J.J., Dizy, J. and Medina, I. (1993). “Infinite dilution diffusion coefficients: benzene derivatives as solutes in supercritical carbon dioxide.” J. Chem. Eng. Data, Vol. 38, pp. 344–349.

[48] Funazukuri, T. and Nishimoto, N. (1996). “Tracer diffusion coefficients of benzene in dense CO2 at 313.2K and 8.5–30 MPa.” Fluid Phase Equilib., Vol. 125, pp. 235–243.

[49] Funazukuri, T., Kong, C.Y. and Kagei, S. (2001). “Infinite dilution binary diffusion coefficients of benzene in carbon dioxide by the Taylor dispersion technique at temperatures from 308.15 to 328.15K and pressures from 6 to 30MPa.” Int. J. Thermophys., Vol. 22, pp. 1643–1660.

[50] Sengers, J.M.H.L., Deiters, U.K., Klask, U., Swidersky, P. and Schneider, G.M. (1993). “Application of the Taylor dispersion method in supercritical fluids.” Int. J. Thermophys., Vol. 14, pp. 893–922.

[51] Fu, H., Coelho, L.A.F. and Matthews, M.A. (2000). “Diffusion coefficients of model contaminants in dense CO_{2}.” J. Supercrit. Fluids, Vol. 18, pp. 141–155 (2000).

[52] Suarez-Iglesias, O., Medina, I., Pizarro, C. and Bueno, J.L. (2008). “Limiting diffusion coefficients of ethyl benzoate, benzylacetone, and eugenol in carbon dioxide at supercritical conditions.” J. Chem. Eng. Data, Vol. 53, pp. 779–784.

[53] Gonzalez, L.M., Suarez-Iglesias, O., Bueno, J.L., Pizarro, C. and Medina, I. (2007). “Application of the corresponding states principle to the diffusion in CO2.” AIChE J., Vol. 53, pp. 3054–3061.

[54] Lai, C.C. and Tan, C.S. (1995). “Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column.” Ind. Eng. Chem. Res., Vol. 34, pp. 674–680.

[55] Filho, C.A., Silva, C.M., Quadri, M.B. and Macedo, E.A. (2003). “Tracer diffusion coefficients of citral and D-limonene in supercritical carbon dioxide.” Fluid Phase Equilib., Vol. 204, pp. 65–73.

[56] Kong, C.Y., Gu, Y.Y., Nakamura, M., Funazukuri, T. and Kagei, S. (2010). “Diffusion coefficients of metal acetylacetonates in supercritical carbon dioxide.” Fluid Phase Equilib., Vol. 297, pp. 162–167.

[57] Silva, C.M. and Macedo, E.A. (1998). “Diffusion coefficients of ethers in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 37, pp. 1490–1498.

[58] Funazukuri, T., Kong, C.Y. and Kagei, S. (2004). “Effects of molecular weight and degree of unsaturation on binary diffusion coefficients for lipids in supercritical carbon dioxide.” Fluid Phase Equilib., Vol. 219, pp. 67–73.

[59] Akgerman, A., Erkey, C. and Orejuela, M. (1996). “Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 35, pp. 911–917.

[60] Lauer, H.H., Mcmanigill, D. and Board, R.D. (1983). “Mobile-phase transport properties of liquefied gases in near-critical and supercritical fluid chromatography.” Anal. Chem., Vol. 55, pp. 1370–1375.

[61] Wells, T., Foster, N.R. and Chaplin, R.P. (1992). “Diffusion of phenylacetic acid and vanillin in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 31, pp. 927–934 (1992).

[62] Kong, C.Y., Withanage, N.R.W., Funazukuri, T. and Kagei, S. (2005). “Binary diffusion coefficients and retention factors for long-chain triglycerides in supercritical carbon dioxide by the chromatographic impulse response method.” J. Chem. Eng. Data, Vol. 50, pp. 1635–1640.

[63] Funazukuri, T., Kong, C.Y. and Kagei, S. (2002). “Infinite-dilution binary diffusion coefficient, partition ratio, and partial molar volume for ubiquinone CoQ10 in supercritical carbon dioxide.” Ind. Eng. Chem. Res., Vol. 41, pp. 2812–2818.

[64] Fan, Y.Q., Qian, R.Y., Shi, M.R. and Shi, J. (1995). “Infinite dilution diffusion coefficients of several aromatic hydrocarbons in octane and 2,2,4-trimethylpentane.” J. Chem. Eng. Data, Vol. 40, pp. 1053–1055.

[65] Chen, B.H.C., Sun, C.K.J. and Chen, S.H. (1985). “Hard sphere treatment of binary diffusion in liquid at high dilution up to the critical temperature.” J. Chem. Phys., Vol. 82, pp. 2052–2055.

[66] Funazukuri, T., Nishimoton, N. and Wakao, N. (1994). “Binary diffusion coefficients of organic compounds in hexane, dodecane, and cyclohexane at 303.2–333.2K and 16.0 MPa.” J. Chem. Eng. Data, Vol. 39, pp. 911– 915.

[67] Chen, H.C. and Chen, S.H. (1985). “Tracer diffusion of crown ethers in n-decane and n-tetradecane: an improved correlation for binary systems involving normal alkanes.” Ind. Eng. Chem. Fundam., Vol. 24, pp. 187–192.

[68] Chen, S.H., Davis, H.T. and Evans, D.F. (1982). “Tracer diffusion in polyatomic liquids. III.” J. Chem. Phys., Vol. 77, pp. 2540–2544.

[69] Matthews, M.A., Rodden, J.B. and Akgerman, A. (1987). “High-temperature diffusion of hydrogen, carbon monoxide, and carbon dioxide in liquid n-heptane, n-dodecane, and n-hexadecane.” J. Chem. Eng. Data, Vol. 32, pp. 319–322.

[70] Matthews, M.A. and Akgerman, A. (1987). “Diffusion coefficients for binary alkane mixtures to 573K and 3.5 MPa.” AIChE J., Vol. 33, pp. 881–885.

[71] Rodden, J.B., Erkey, C. and Akgerman, A. (1988). “High-temperature diffusion, viscosity, and density measurements in n-eicosane.” J. Chem. Eng. Data, Vol. 33, pp. 344–347.

[72] Matthews, M.A., Rodden, J.B. and Akgerman, A. (1987). High-temperature diffusion, viscosity, and density measurements in n-hexadecane, J. Chem. Eng. Data, Vol. 32, pp. 317–319.

[73] Sun, C.K.J. and Chen, S.H. (1985). “Tracer diffusion of aromatic hydrocarbons in n-hexane up to the supercritical region.” Chem. Eng. Sci., Vol. 40, pp. 2217–2224.

[74] Dymond, J.H. and Woolf, L.A. (1982). “Tracer diffusion of organic solutes in n-hexane at pressures up to 400 MPa.” J. Chem. Soc.: Faraday Trans., Vol. 78, pp. 991–1000.

[75] Rodden, J.B., Erkey, C. and Akgerman, A. (1988). “Mutual diffusion coefficients for several dilute solutes in n-octacosane and the solvent density at 371–534 K.” J. Chem. Eng. Data, Vol. 33, pp. 450–453.

[76] Wakeham, W.A. and Slater, D.H. (1974). “Binary diffusion coefficients of homologous species in argon.” J. Phys. B: At., Mol. Opt. Phys., Vol. 7, pp. 297–306.

[77] Suetin, P.E., Loiko, A.E., Kalinin, B.A. and Gerasimov, Y.F. (1970). “Measuring the mutual gas diffusion coefficient at low temperatures.” J. Eng. Phys. Thermophys., Vol. 19, pp. 1451–1453.

[78] Dubro, G.A. and Weissman, S. (1970). “Measurements of gaseous diffusion coefficients.” Phys. Fluids, Vol. 13, pp. 2682-2688.

[79] Malinauskas, A.P. and Silverman, M.D. (1969). “Gaseous diffusion in neon-noble-gas systems.” J. Chem. Phys., Vol. 50, pp. 3263–3270.

[80] Gavril, D., Atta, K.R. and Karaiskakis, G. (2004). “Determination of collision cross-sectional parameters from experimentally measured gas diffusion coefficients.” Fluid Phase Equilib., Vol. 218, pp. 177–188.

[81] Weissman, S. (1971). “Mutual diffusion coefficients for He–H2 system.” J. Chem. Phys., Vol. 55, pp. 5839– 5840.

[82] Cain, D. and Taylor, W.L. (1979). “Diffusion coefficients of krypton-noble gas systems.” J. Chem. Phys., Vol. 71, pp. 3601–3607.

[83] Weissman, S. and Dubro, G.A. (1971). “Diffusion coefficients for CO2–CH4.” J. Chem. Phys., Vol. 54, pp. 1881–1883.

[84] Tominaga, T., Park, T., Rettich, T.R., Battino, R. and Wilhelm, E. (1988). “Binary gaseous diffusion coefficients. 7: Tetrachloroethene and 1, 1, 1-trichloroethane with methane and tetrafluoromethane at 100 kPa and 283–343 K.” J. Chem. Eng. Data, Vol. 33, pp. 479–481.

[85] Wakeham, W.A. and Slater, D.H. (1973). “Diffusion coefficients for n-alkanes in binary gaseous mixtures with nitrogen.” J. Phys. B: At., Mol. Opt. Phys., Vol. 6, pp. 886–896.

[86] Haykin, S. (1999 ). Neural Networks: A Comprehensive Foundation. 2nd. Ed., Prentice-Hall, Englewood Cliffs, NJ.

[87] Levenberg, K. (1944). “A method for the solution of certain problems in least squares.” SIAM J. Numer. Anal., Vol. 16, pp. 588–604.

[88] Marquardt, D. (1963). “An algorithm for least-squares estimation of nonlinear parameters.” SIAM J. Appl. Math., Vol. 11, pp. 431–441.

[89] Hagan, M.T. and Menhaj, M. (1994). “Training feedforward networks with the Marquardt algorithm.” IEEE Trans. Neural Netw., Vol. 5, pp. 989–993.

[90] Liong, K.K., Wells, P.A. and Foster, N.R. (1991). “Diffusion in supercritical fluids.” The J. Supercrit. Fluids, Vol. 4, pp. 91–108.

[91] Wilke, C.R. and Pin, C. (1955). “Correlation of diffusion coefficients in dilute solutions.” AIChE J., Vol. 1, pp. 264–270.

[92] Tyn, M.T. and Calus, W.F. (1975). “Diffusion coefficients in dilute binary liquid mixtures.” J. Chem. Eng. Data, Vol. 20, pp. 106–109.

[93] Scheibel, E.G. (1954). “Correspondence. Liquid diffusivities. Viscosity of gases.” Ind. Eng. Chem., Vol. 46, pp. 2007–2008.

[94] Reddy, K.A. and Doraiswamy, L.K. (1967). “Estimating liquid diffusivity.” Ind. Eng. Chem. Fundam., Vol. 6, pp. 77–79.

[95] He, C.-H., Yu, Y.-S. and Su, W.-K. (1998).“Tracer diffusion coefficients of solutes in supercritical solvents.” Fluid Phase Equilib., Vol. 142, pp. 281–286.

[96] Zhu, Y., Lu, X., Zhou, J., Wang, Y. and Shi, J. (2002). “Prediction of diffusion coefficients for gas, liquid and supercritical fluid: application to pure real fluids and infinite dilute binary solutions based on the simulation of Lennard–Jones fluid.” Fluid Phase Equilib., Vol. 194–197, pp. 1141–1159.

[97] Dymond, J.H., Bich, E., Vogel, E., Wakeham, W.A., Vesovic, V. and Assael, M.J. (1996). Theory: dense fluids. in: Millat, J., Dymond, J.H. and Nieto de Castro, C.A. (Eds.), Transport Properties of Fluids: Their Correlation, Prediction and Estimation. Cambridge University Press, London.

[98] Silva, C.M. and Liu, H. (2008). Modeling of transport properties of hard sphere fluids and related systems, and its applications. in: Mulero, A. (Ed.), Theory and Simulation of Hard-Sphere Fluids and Related Systems. Springer, Berlin/Heidelberg.

[99] Dymond, J. H. (1974). “Corrected Enskog theory and transport coefficients of liquids.” J. Chem. Phys., Vol. 60, pp. 969–973