Ghaeliniya, M., Akbarzadeh, M., Vakili, M., Sanjari, E. (2016). A new generalized model for predict speed of sound of refrigerants. Journal of Chemical and Petroleum Engineering, 50(1), 41-47. doi: 10.22059/jchpe.2016.57842

Mahboobe Ghaeliniya; Mohammad Akbarzadeh; Mohammad Hasan Vakili; Ehsan Sanjari. "A new generalized model for predict speed of sound of refrigerants". Journal of Chemical and Petroleum Engineering, 50, 1, 2016, 41-47. doi: 10.22059/jchpe.2016.57842

Ghaeliniya, M., Akbarzadeh, M., Vakili, M., Sanjari, E. (2016). 'A new generalized model for predict speed of sound of refrigerants', Journal of Chemical and Petroleum Engineering, 50(1), pp. 41-47. doi: 10.22059/jchpe.2016.57842

Ghaeliniya, M., Akbarzadeh, M., Vakili, M., Sanjari, E. A new generalized model for predict speed of sound of refrigerants. Journal of Chemical and Petroleum Engineering, 2016; 50(1): 41-47. doi: 10.22059/jchpe.2016.57842

A new generalized model for predict speed of sound of refrigerants

^{1}Chemical Engineering Department, Shahreza Branch, Islamic Azad University, Shahreza, Iran

^{2}Mechanical Engineering Department, Najafabad Branch, Islamic Azad University, Isfahan, Iran

Abstract

In consideration of physical and chemical properties of pure substances, speed of sound is one of important quantity which can used to calculate many of other thermo-physical properties such as isothermal compressibility, Joule-Thomson coefficient, isobaric heat capacity and etc. These thermo-physical properties are the main parameters in industrial and chemical processes. Development of accurate models for thermodynamic properties computation such as speed of sound is well expected above all in those fields where very high performance calculations have to be reached. In this present work, a new generalized model as a function of reduced temperature and reduced density is proposed to correlate speed of sound of methane, ethane, propane and butane halogenated refrigerants. Speed of sounds have been calculated and compared with data reported in literatures for 5600 data points of 28 refrigerants, and the overall average absolute percentage deviation of 0.92%. The source of speed of sound data used in this study is the NIST Chemistry WebBook.

[1] Victoria, H. P., Silva, G. A. I., Estrada, M. R., Hall, K. R. A. (2013). “Correlation to predict speed of sound in liquids: 1. n-Alkanes (≥ C5) and their mixtures at high pressures”, Fluid Phase Equilibria., Vol. 338, PP.119-127.

[2] Bobik, M. (1978). “Thermodynamic quantities for liquid benzene 1. Sound velocities between 283 and 463 K and up to 62 MPa”, J. Chem. Thermodynamics., Vol. 10, PP.1137-1146.

[3] Niepmann, R. (1984). “Thermodynamic properties of propane and n-butane 2. Speeds of sound in the liquid up to 60 MPa”, J. Chem. Thermodynamics., Vol. 16, PP.851-860.

[4] Bobik, M., Niepmann, R., Marius, W. (1979). “Thermodynamic quantities for liquid carbon tetrachloride 1. Sound velocities between 265 and 435 K and up to 62 MPa”, J. Chem. Thermodynamics., Vol. 11, PP.351-357.

[5] Niepmann, R., Esper, G. J., Riemann, K. A. (1987). “Thermodynamic properties of chlorodifluoromethane and dichloromethane Speeds of sound in the liquid up to 60 MPa”, J. Chem. Thermodynamics., Vol. 19, PP.741-749.

[6] Pandey, J. D., Vyas, V. P., Jain, Dubey, G. P., Tripathi, N., Dey, R. (1999). “Speed of sound, viscosity and refractive index of multicomponent systems: Theoretical predictions from the properties of pure components”, J. Mol. Liquids., Vol. 81, PP.123-133.

[7] Queimada, A. J., Coutinho, J. A. P., Marrucho, I. M., Daridon, J. L. (2006). “Corresponding-States Modeling of the Speed of Sound of Long-Chain Hydrocarbons”, Int. J. Thermophysics., Vol. 27, PP.1095-1109.

[8] Maghari, A., Sadeghi, M. S. (2007). “Prediction of sound velocity and heat capacities of n-alkanes from the modified SAFT-BACK equation of state”, Fluid Phase Equilibria., Vol. 252, PP.152-161.

[9] Scalabrin, G., Marchi, P., Grigiante, M. (2007). “Speed of sound predictive modeling in a three-parameter corresponding states format: Application to pure and mixed haloalkanes”, Exp. Therm. Fluid. Sci., Vol. 31, PP.261-278.

[10] Pardini, P., Iriarte, D.I., Pomarico, J.A., Ranea-Sandoval, H.F. (2016). “Photoacoustic determination of speed of sound in binary mixtures of water and ethyl and methyl alcohol”, Opt. Int. J. Light. Elect. Opt., Vol. 127, PP.2260–2265.

[11] Nascimento, F.P., Paredes, M.L.L., Mehl, A., Lucena, R.S., Costa, A.L.H., Pessoa, F.L.P. (2016). “High pressure speed of sound and density of (decalin + n-decane), (decalin + n-hexadecane) and (n-decane + n-hexadecane) systems and thermodynamic modeling with PHCT equation of state”, J. Chem. Thermodynamics., Vol. 95, PP.124–135.

[12] H.C. Shin, R. Prager, H. Gomersall, N. Kingsbury, G. Treece, A. Gee. (2010). “Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution”, Ultrasonics, Vol. 50, PP.716–725.

[13] H.C. Shin, R. Prager, H. Gomersall, N. Kingsbury, G. Treece, A. Gee. (2010). “Estimation of Average Speed of Sound Using Deconvolution of Medical Ultrasound Data”, Ultra. Med. Bio., Vol. 36, PP.623–636.

[14] Lainez, A., Gopal, P., Zollweg, J. A., Streett, W. B. (1989). “Speed-of-sound measurements for liquid trichlorofluoromethane under pressure”, J. Chem. Thermodynamics., Vol. 21, PP.773-777.

[15] Takagi, T., Sakura, T., Guedes, H. J. R. (2002). “Speed of sound in liquid cyclic alkanes at temperatures between (283 and 343) K and pressures up to 20 MPa”, J. Chem. Thermodynamics., Vol. 34, PP.1943-1957.

[16] Takagi, T., Sawada, K., Urakawa, H., Ueda, M., Cibulka, I. (2004). “Speed of sound in liquid tetrachloromethane and benzene at temperatures from 283.15 K to 333.15 K and pressures up to 30 MPa”, J. Chem. Thermodynamics., Vol. 36, PP.659-664.

[17] Takagi, T., Sawada, K., Urakawa, H., Ueda, M., Cibulka, I. (2004). “Speeds of Sound in Dense Liquid and Vapor Pressures for 1,1-Difluoroethane”, J. Chem. Eng. Data., Vol. 49, PP.1652-1656.

[18] Daridon, J. L., Lagrabette, A., Lagourette, B. (1998). “Speed of sound, density, and compressibilities of heavy synthetic cuts from ultrasonic measurements under pressure”, J. Chem. Thermodynamics., Vol. 30, PP.607-623.

[19] Khasanshin, T. S., Poddubskij, O. G., Shchamialiou, A. P., Samuilov, V. S. (2006). “The thermodynamic properties of 1-alkenes in the liquid state: 1-Hexadecene”, Fluid Phase Equilibria., Vol. 245, PP.26-31.

[20] NIST Chemistry WebBook, NIST Standard Reference Database, National Institute of Standards and Technology, Gaithersburg MD, 2005, http://webbook.nist.gov.