Modeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression

Document Type: paper


California State University, Bakersfield, CA, USA


Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension (IFT) behaviors of complex supercritical carbon dioxide (sc-CO2) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molecular weights and diffusion coefficients for various components present in the system). In the absence of measured data, often phase behavior packages are used for obtaining these input data for performing calculations. Very few researchers have used experimentally measured input data for performing parachor based modeling of the experimental IFT behaviors of sc-CO2 and crude oil systems that are of particular interest to CO2 injection in porous media based enhanced oil recovery (EOR) operations.
This study presents the results of parachor based modeling performed to predict pressure dependence of IFT behaviors of a complex sc-CO2 and crude oil system for which experimentally measured data is available in public domain. Though parachor model based on calculated IFT behaviors shows significant deviation from the measured behaviors in high IFT region, difference between the calculated and the experimental behaviors appears to vanish in low IFT region. These observations suggest that basic parachor expression based calculated IFT behaviors in low IFT region follow the experimental IFT behaviors more closely.
An analysis of published studies (basic and mechanistic parachor expressions based on modeling of pressure dependence of IFT behaviors of both standard and complex sc-CO2 and crude oil systems) and the results of this study reinforce the need of better description of gas-oil interactions for robust modeling of pressure dependence of IFT behavior of these complex systems.


[1] Al-Mjeni,   R.,   Arora,   S.,   Cherukupalli,   P.,   van Wun nik, J., Edwards, J., Felber, B.J., Gurpinar, O., Hira saki, G.J., Miller, A.C., Jackson, C., Kristensen,  M.R.,  Lim,  F.,  Ramamoorthy,  R.  (2011).  “Has  time come  for  EOR?”,   Schlumberger’s  Oil field Review, Winter 2010/2011, Vol. 22, no. 4.

[2] Wallace  M,  Kuuskraa  VA,  DiPietro  P  (2013)   An  In-Depth Look at “Next  Generation”  CO2  EOR  Technology.  Available from    Disag-Next-Gen-CO2-EOR_full_v6.pdf.      Accessed      June 2015.

[3] Hsu   Jack,   J.C.,   Nagarajan,   N.,   Robinson,   J.R.L.    (1985). “Equilibrium phase compositions, phase densities, and interfacial tension for CO2   +  hydrocarbon  Systems.  1.  CO2  +  n-butane.”,   Journal of Chemical  Engineering  Data, Vol.  30,  No.  4,  pp.   485–491.

[4] Nagarajan,  N.,  Robinson,  J.R.L.  (1986).  “Equilibrium phase compositions, phase densities,  and interfacial tensions for CO2  + hydro carbon systems. 2.  CO2 + n-decane.”  Journal of Chemical  Engineering  Data,  Vol.  31,  No. 2,  pp.  168–171.

[5] Nagarajan,  N.,  Gasem,  K.A.M.,  Robinson,  J.R.L.   (1990). “Equilibrium phase compositions, phase densities, and interfacial tensions for CO2   +  Hydrocarbon  Systems.  6.  Carbon  dioxide  +  n-butane  +  n-decane.”  Journal of Chemical  Engineering Data, Vol. 35, No. 3, pp. 228–231.

[6] Gasem, K.A.M., Dickson, K.B., Shaver, R.D., Robinson, R.L. (1993). “Experimental phase densities and interfacial tensions for a CO2 /synthetic-oil  and  a  CO2 /reservoir-oil  system.”  Society of Petroleum Engineers.  DOI: 10.2118/22216-PA.

[7] Schechter, D.S., Guo, B. (1998). “Parachors based  on modern physics and their uses in IFT prediction of reservoir fluids.” Society of Petroleum Engineers. DOI: 10.2118/30785-PA.

[8] Ayirala,  S.C.,  Rao,  D.N.  (2004).  “Application  of   a  new  mechanistic  Parachor  model  to  predict  dynamic  gas-oil  miscibility  in  reservoir  crude  oil-solvent  systems.”   Society of Petroleum  Engineers. DOI: 10.2118/91920-MS.

[9] Nobakht  M,  Moghadam  S,  and  Gu  Y  (2008) Determination of CO2 Minimum   Miscibility Pressure from Measured and Predicted  Equilibrium  Interfacial  Tensions.   Ind. Eng. Chem. Res.,  47  (22),  pp.  8918–8925,  DOI:  10.1021/ie800358g.

[10] Ashrafizadeh, S.N., Ghasrodashti, A.A. (2011).  “An  investigation  on  the  applicability  of  Parachor  model  for  the  prediction  of  MMP  using  five equations of state.”  Chemical  Engineering   Research and Design, Vol. 89, pp. 690-696.

[11] Orr, J.F.M., Jessen, K. (2007). “An analysis of the  vanishing interfacial tension technique for determination of minimum miscibility pressure.”  Fluid Phase Equilibria, Vol.  255,  No.  2,  pp.  99 - 109.

[12] Jessen,  K,  Orr  J.F.M.  (2008).  “On  interfacial- tension  measurements  to  estimate  minimum  miscibility pressures.”  Society of Petroleum Engineers.   DOI: 10.2118/110725-PA.

[13] Teklu  T.W.,  Alharthy,  N.,  Kazemi,  H.,  Yin,  X.,   Graves,   R.M.   (2014).   “Vanishing   interfacial    tension  algorithm  for  MMP  determination  in   unconventional   reservoirs.”  Society of Petroleum Engineers. DOI: 10.2118/169517-MS.

[14] Ayirala,  S.C.  (2005).  Measurement and modeling of fluid-fluid miscibility in multicomponent hydrocarbon systems. PhD Dissertation, Louisi ana State University, Baton Rouge, Louisiana.

[15] Sequeira, D.S. (2006).  Compositional effects on gas-oil interfacial tension and miscibility at reservoir conditions.  MS  Thesis,  Louisiana  State   University, Baton Rouge, Louisiana.

[16] Sequeira, D.S., Ayirala, S.C., Rao, D.N. (2008). “Reservoir condition measurements of compositional  effects  on  gas-oil  interfacial  tension  and  miscibility.”  Society of Petroleum   Engineers.   DOI:   10.2118/113333-MS.

[17] Saini,  D.,  Rao,  D.N.  (2010).  “Experimental  determination  of  minimum  miscibility  pressure  (MMP) by gas/oil IFT measurements for a gas  injection  EOR  project.”   Society of Petroleum Engineers. DOI: 10.2118/132389-MS.

[18] Georgiadis,  A.,  Llovell,  F.,  Bismarck,  A.,  Blas,  F.J., Galindo,  A.,  Maitland,  G.C.,  Martin  Trusler, J.P.,  Jackson, G. (2010). “Interfacial tension measurements and modelling of (carbon dioxide + n-alkane) and (carbon dioxide + water) binary mixtures  at  elevated  pressures  and  temperatures.”  Journal of Supercritical Fluids,  Vol.  55,  pp.  743- 754.