Pressure Loss Estimation of Three-Phase Flow in Inclined Annuli for Underbalanced Drilling Condition using Artificial Intelligence

Document Type: paper

Author

Birjand University of Technology, Birjand, Iran.

Abstract

Underbalanced drilling as multiphase flow is done in oil drilling operation in low pressure reservoir or highly depleted mature reservoir. Correct determination of the pressure loss of three phase fluids in drilling annulus is essential in determination of hydraulic horsepower requirements during drilling operations. In this paper the pressure loss of solid-gas-liquid three-phase fluids flow in inclined annulus was estimated using artificial neural network (ANN). Experimental data which are available in the literature were used for design of ANN. Pressure loss as output of ANN, was estimated from five effective parameters as inputs of ANN including gas and liquid superficial velocities, the inclination from horizontal, rate of penetration (ROP), pipe rotation speed (RPM). The correlation coefficient between predicted and experimental value for train and test data is 0.998 and 0.997 respectively.The root mean square error (RMS) and average absolute percent relative error (AAPE) for train data are 0.0082 and 2.77% and for test data, they are 0.0108 and 3.68 % respectively. The reliable results showed the high ability of artificial neural network for estimating pressure loss of three phase flow in annulus.

Keywords


[1] Ramalho, J. (2006). “Underbalanced drilling  in  the  reservoir,  An  integrated  technologyapproach[C].” SPE  Russian  Oil  and  Gas  Technical Conference and Exhibition, Moscow, Russia.

[2] Zhiming, W., Liqiu, P., Ke, Z. (2007). “Prediction  of dynamic wellbore pressure in gasified fluid drilling.” Petroleum  Science , Vol. 4, No. 4, pp. 66-73.

[3] Lockhart,  R.W.,  Martinelli,  R.C.  (1949).  Proposed correlation of data for isothermal two-phase, two-component flow in pipes.” Chemical  Engineering Progress, Vol. 45, No. 1, pp. 39–48.

[4] Duns, H. Jr., Ros, N.C.J. (1963). “Vertical flow of  gas and liquid mixtures in wells.”  Proceedings of the 6th  World Petroleum Congress, Toyko, Japan.

[5] Beggs, H.D., Brill, J.P. (1973). “A study of two-phase flow in inclined pipes.”  Journal of Petroleum Technology , Vol. 25, No. 5, pp. 607-617.

[6] Oriol, J., Leclerc, J.P., Jallut, C., Tochon, P., Clement,  P. (2008). “Characterization of the two-phase flow regimes and liquid dispersion in horizontal  and vertical tubes by using colored tracer and  non-intrusive optical detector.” Chemical  Engineering Science , Vol. 63, pp. 24-34.

[7] Bonizzi, M., Andreussi, P., Banerjee, S. (2009).  “Flow  regime  independent,  high  resolution  multi-field modeling of near-horizontal gas– liquid flows in pipelines.”  International Journal  of Multiphase Flow, Vol. 35, pp. 34-46.

[8] Sadatomi, M., Sato, Y., Saruwatari, S. (1982).  “Two-phase flow in vertical noncircular chan nels.”International Journal of Multiphase Flow Vol. 8, pp. 641-655.

[9] Hasan, A.R., Kabir, C.S. (1992). “Two-phase flow  in vertical and inclined annuli.” International  Journal of Multiphase Flow , Vol. 18, pp. 279–293.

[10] Zhou, L. (2004). “Cuttings transport with aerated mud in horizontal annulus under elevated pressure and temperature conditions.” PhD Thesis, The University of Tulsa.

[11] Osgouei,  R.E.  (2010).   “Determination  of  cuttings transport properties of gasified drilling fluids.” PhD Thesis, Middle East Technical University, Ankara, Turkey.

[12] Wei, N., Meng, Y.F., Li, G., Wan, L.P., Xu, Z.Y., Xu,  X.F., Zhang, Y. R. (2013). “Cuttings transport models and experimental visualization of underbalanced horizontal drilling.”  Mathemati -cal Problems in Engineering , Vol. 2013, 6 pages.

[13] Yan, T, Wang, K., Sun, X., Luan, S., Shao S. (2014).  “State-of-the-art cuttings transport with aerated liquid and foam in complex structure wells.”  Renew  Sustainable  Energy  Review,  Vol.  37,  pp.  560-568.

[14] Suradi, S.R., Mamat, N.S., Jafar, M.Z., Sulaiman,  W.R.W., Ismail, A.R. (2015). “Study of cuttings transport  using  stable  foam  based  mud  in  inclined wellbore.”  Journal of applied science , Vol.  15, pp. 808-814.

[15] Sato,  Y.,  Yoshinaga,  T.,  Sadatomi,  M.  (1991).   “Data and empirical correlation for the mean velocity of coarse particles in a vertical three-phase air-water-solid particle flow.”  Proceedings  of  the  international  conference  on  multiphase flows, Tsukuba, Japan.

[16] Gillies,  R.G.,  Mckibben,  M.  J.,  Shook,  C.  (1997).  “Pipeline flow of gas, liquid and sand mixture at low velocity.”  Journal of Canadian Petroleum  Technology , Vol. 36, pp. 36-42.

[17] King, M.J.J., Fairhurst, C.P., Hill, T.J. (2001). “Solids transport in multiphase flows: applications to high viscosity systems.”  Journal  of  Energy   Resource , Vol. 123, pp. 200-204.

[18] Yang, Z.L., Ladam, Y., Laux, H., Danielson, T.J.,  Goldszal, A., Martins, A.L. (2007). “Simulation  of  sand  transport  in  a  stratified  gas-liquid two-phase pipe flow.”  Proceedings  of  the  BHR   Multiphase  Production  Technology  Conference Edinburgh, UK.

[19] Ozbayoglu, M.E., Osgouei, R.E., Ozbayoglu, A.M.,  Yuksel, E. (2012). “Hole cleaning performance  of gasified drilling fluids in horizontal well sections.”  SPE Journal , Vol. 17, No. 3, pp. 912-923.

[20]  Xie, J., Yu B., Zhang, X., Shao, Q., Song, X. (2013).  “Numerical  simulation  of  gas-liquid-solid  three-phase flow in deep wells.” Advances  in   Mechanical Engineering , pp. 1-10.

[21] Hagan, M.T., Demuth, H.B., Beale, M.H. (1996).  Neural  network  design .  PWS  Publishing,  Boston, MA.

[22] Rooki, R., DoulatiArdejani, F., Moradzadeh, A.,  Kelessidis, V.C., Nourozi, M. (2012). “Predic tion of terminal velocity of solid spheres falling through Newtonian and non-Newtonian  power law pseudoplastic fluid using artificial neural network.”  International Journal of Min eral Processing , Vol. 110-111, pp. 53-61.

[23] Rooki, R, DoulatiArdejani, F, Moradzadeh, A.  (2014). “Hole cleaning prediction in foam drilling using artificialneural network and multiple linear regression.” Geomaterials,  Vol. 4, No. 1,  pp. 47-53.

[24] Rooki, R. (2015). “Estimation of pressure loss  of  Herschel–Bulkley  drilling  fluids  during  horizontal annulus using artificial neural network.”   Journal of Dispersion Science and Technology, Vol. 36, pp. 161-169.

[25] Osman, E.S.A. (2004). “Artificial neural net work models for identifying flow regimes and predicting  liquid  holdup  in  horizontal  multiphase flow.”  SPE Production and Facilities, Vol.  19, pp. 33-40.

[26] Shippen, M. E., Scott, S. L. (2004). “A neural  network model for prediction of liquid holdup  in two-phase horizontal flow.” SPE Production and Facility , Vol. 19, No. 2, pp. 67-76.

[27] Ozbayoglu, E.M., Ozbayogl, M.A. (2009). “Estimating  flow  patterns  and  frictional  pressure losses of two-phase fluids in horizontal wellbores  using  artificial  neural  networks.”  Petrolelum Science and Technology , Vol. 27, pp. 135-149.

[28] Alizadehdakhel, A., Rahimi, M., Sanjar, J., Alsairafi, A.A. (2009). “CFD and artificial neural  network modeling of two-phase flow pressure drop.” International  Journal  of  Heat  and  Mass   Transfer , Vol. 36, pp. 850–856.

[29]  Haykin, S. (1999).  “Neural  networks:  A  comprehensive foundation.”   2nd  ed.  Upper  Saddle  River, NJ, Prentice Hall.

[30] Demuth, H., Beale M. (2002).  “Neural network  toolbox for use with MATLAB.”  User’s  Guide  Version 4.

[31] Hornik, K., Stinchcombe M., White H. (1989).  “Multilayer feed forward networks are univer sal approximators.” Neural Network , Vol. 2, pp.  359-66.

[32] Cybenko, G. (1989). “Approximation by super position of a sigmoidal function.”  Mathematics of Control, Signals, and Systems , Vol. 2, pp. 303- 14.

[33] Fletcher, D., Goss, E., (1993). “Forecasting with  neural networks: an application using bankruptcy  data.” Information  and  Management Vol. 24, pp. 159-167.