Evaluating the Effect of Graphite Source and Operating Conditions on the Synthesis of Graphene Oxide

Document Type : Original Paper


1 M.Sc. Student, Dept. of Chemical Eng., University of Tehran, Tehran, Iran.

2 Assistant Professor, Dept. of Chemical Eng., University of Tehran, Tehran, Iran.

3 Professor, Dept. of Chemical Eng., University of Tehran, Tehran, Iran.


In this research graphene oxide was synthesized by two methods. These methods were achieved by changing the improved Hummers’ and modified Hummers’ methods. Structure of graphene oxide was characterized by scanning electron microscopy (SEM) images, X-ray diffraction (XRD) patterns, Raman spectroscopy and Fourier transform infrared (FTIR) spectra. According to SEM image, the thickness of graphene oxide sheets prepared by improved Hummers’ method is about 66 nm. In improved Hummers’ method excluding NaNO3 from reacting gel and performing reaction in a 9:1 volume ratio of concentrated H2SO4/H3PO4 mixture improved the oxidation process by elimination of toxic gases, finally the prepared GO contains well-oxidized carbon materials. XRD results implied more oxidation for synthesized GO by improved Hummers’ based method. Importance of graphite source was shown in synthesis of pure GO. Two sources of graphite supplied by Daejung and Fluka Companies were used to synthesis GO in improved Hummers’ method. According to SEM images and XRD patterns, the graphite source prepared by Fluka Co. was more efficient towards production of pure GO than other graphite source. The results also indicated that temperature and mixing condition are two important factors for synthesis of GO.


[1] Moktadir, Z. (2014). “ Graphene nanoelectrome chanics (NEMS),  in  Graphene: properties, preparation,  characterisation  and  devices,  First  edition. London, GB, Woodhead , pp. 341-358.
[2] Geim, A.K. and Novoselov, K.S. (2007). “The rise of grapheme.”   Nature Materials , Vol. 6, No.  3, pp. 183-191.
[3] Stankovich,  S.,  Dikin,  D.A.,  Dommett,  G.  H.,  Kohlhaas, K.M., Zimney, E.J. (2006). “Graphene-based  composite  materials.”   Nature , Vol. 442,  No. 7100, pp. 282-286.
[4] Geim, A.K. (2009). “Graphene: status and prospects.”  Science, Vol. 324, No. 5934, pp. 1530- 1534.
[5] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004). “ Electric field effect in  atomically thin carbon films.” Science, Vol. 306,  No. 5696, pp. 666-669 44.
[6] Kim, K.S., Zhao, Y., Jang, H, Lee, S.Y., Kim, J.M.  (2009).  “Large-scale  pattern  growth  of  graphene films for stretchable transparent electrodes.”  Nature , Vol. 457, No. 7230, pp. 706-710.
[7] Kovtyukhova,  N.I.,  Ollivier,  P.J.,  Martin,  B.R.,  Mallouk, T.E., Chizhik, S.A. (1999). “Layer-by- layer assembly of ultrathin composite films  from  micron-sized  graphite  oxide  sheets  and   polycations.” Chemistry  of  Materials , Vol. 11,  No. 3, pp. 771-778.
[8] Wang, Y., Xie, L., Sha, J., Ma, Y., Han, J. (2011).  “Preparation and chemical reduction of laurylamine-intercalated  graphite  oxide.”   Materials  Science,  Vol. 46, No. 10, pp. 3611-3621.
[9] Yoon, S., and In, I. (2011). “Role of poly (N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction.” Materials Science,  Vol. 46, No. 5, pp. 1316-1321.
[10] Liu, J., Cui, L., and Losic, D. (2013). “Graphene  and  graphene  oxide  as  new  nanocarriers  for  drug  delivery  applications.”   Acta  Biomaterialia,   Vol. 9, No. 12, pp. 9243-9257.
[11] Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff,  R.S. (2010). “The chemistry of graphene oxide.” Chemical  Society Reviews, Vol. 39, No. 1, pp. 228-240.
[12] Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z. (2010). “Improved synthesis  of graphene oxide.”  ACS Nano,  Vol. 4, No. 8, pp.  4806-4814.
[13] Stankovich, S., Piner, R.D., Chen, X., Wu, N.,  Nguyen, S.T.,  and  Ruoff, R.S. (2006). “Stable  aqueous  dispersions  of  graphitic  nanoplatelets  via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate).”  Journal of Materials Chemistry,  Vol.  16, No. 2, pp. 155-158.
[14] Brodie, B.C. (1859). “On the Atomic Weight  of Graphite.” Philosophical  Transactions  of  the   Royal Society of London,  Vol. 149, pp. 249-259.
[15] Staudenmaier, L. (1898). “Verfahren zur Dar-stellung der Graphitsaure.”  Berichte  der  Deutschen  Chemischen Gesellschaft,  Vol. 31, No. 2, pp. 1481- 1487.
[16] Hummers, W.S. and Offeman, R.E. (1958). “Preparation of Graphitic Oxide.”  American  Chemical  Society,  Vol. 80, No. 6, pp. 1339-1339.
[17] Chua, C.K. and Pumera, M. (2014). “Chemical  reduction of graphene oxide: a synthetic chemistry viewpoin.” Chemical Society Reviews , Vol.  43, No. 1, pp. 291-312.
[18] Huang, X., Qi, X., Boey, F. and Zhang, H. (2012).  “Graphene-based composites.”  Chemical  Society Reviews, Vol. 41, No. 2, pp. 666-686.
[19] Lightcap,  I.V.  and  Kamat,  P.V.  (2012).  “Graphitic   design:   prospects   of   graphene-based   nanocomposites  for  solar  energy  conversion,   storage, and sensing.”  Accounts of Chemical Research, Vol. 46, No. 10, pp. 2235-2243.
[20] Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S. and Dai, H. (2008). “Nano-graphene  oxide  for  cellular  imaging  and  drug   delivery.”  Nano Research , Vol. 1, No. 3, pp. 203- 212.
[21] Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong,  B.H., Min, D.H. (2013). “Biomedical applications  of graphene  and  graphene  oxide.”  Accounts  of  Chemical  Research , Vol. 46, No. 10,  pp. 2211-2224.
[22] Wang, Y., Li, Z., Wang, J., Li, J. and Lin, Y. (2011).   “Graphene and graphene oxide: biofunctionalization  and  applications  in  biotechnology.”  Trends  in  Biotechnology , Vol. 29 , No. 5, pp. 205-212.
[23] Pyun, J. (2011).”Graphene oxide as catalyst:  application of carbon materials beyond nanotechnology.” Angewandte Chemie International Edition , Vol. 50, No. 1, pp. 46-48.
[24] Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R.,  and Huang, J. (2010). “Graphene oxide sheets  at  interfaces.”   American  Chemical  Society , Vol.  132, No. 23, pp. 8180-8186.
[25] Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F.,  Huang, J. (2010). “Graphene oxide as surface tant  sheets.”  Pure  and  Applied  Chemistry , Vol.  83, No. 1, pp. 95-110.
[26] He,  H.,  Riedl,  T.,  Lerf,  A.  and  Klinowski,  J.  (1996).  “Solid-state NMR studies of the structure of graphite oxide.”  Physical Chemistry, Vol.  100, No. 51, pp. 19954-19958.
[27] Dimiev, A.M. and Tour, J.M. (2014). “Mechanism of graphene oxide formation.”  ACS Nano ,  Vol. 8, No. 3, pp. 3060-3068.
[28] Higginbotham, A., Kosynkin, D., Sinitskii, A.,  Sun, Z., Tour, J.M. (2010). “Lower- defect graphene  oxide  nanoribbons  from  multiwalled  catbon nanotubes.”  ACS Nano , Vol. 4, No. 4, pp.  2059-2069.
[29] Shi, C., Chen, L., Xu, Z., Jiao, Y., Li, Y. (2012).  “Monitoring  influence  of  chemical  preparation  procedure  on  the  structure  of  graphene  nanosheets.”  Physica  E:  Low-dimensional Systems and Nanostructures, Vol. 44, No.7-8, pp.  1420-1424.
[30] Shahriary, L. and Athawale, A.A. (2014). “Graphene oxide synthesized by using modified  hummers  approach.”  Renew.  Energy  and  Env.   Engg , Vol. 2, No. 1, pp. 58-63.
[31] Tuinstra, F. and Koenig, J.L. (1970). “Raman  spectrum  of  graphite.” Chemical  Physics , Vol.  53, No. 3, pp. 1126-1130.
[32] Ferrari, A.C. and Robertson, J. (2000). “Interpretation of Raman spectra of disordered and  amorphous carbon.” Physical Review B,  Vol. 61, No. 20, pp. 14095-14107.
[33] Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’Ho-mme, R.K., Aksay, I.A. and Car, R. (2008). “Raman spectra of graphite oxide and functionalized graphene sheets.”  Nano Letters , Vol. 8, No.  1, pp. 36-41.
[34] Guo, H., Wang, X., Qian, Q., Wang, F., Xia, X.  (2009). “A green approach to the synthesis of  graphene nanosheets.”  ACS Nano , Vol. 3, No. 9,  pp. 2653-2659.