Experimental Studies on the Conical Cap tray Performance

Document Type : Original Paper


1 Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, Iran.

2 Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran.

3 South Pars Gas Complex (SPGC), Assaluyeh, Iran


In the present study, experimental investigations about the hydrodynamics of the conical cap tray (ConCap tray) have been carried out. The ConCap tray is an innovative and novel type of cap trays. The effect of the different weir height (2.5, 5 and 7 cm) on the weeping, entrainment and the total pressure drop for the ConCap tray was measured, compared and correlated. The hydraulic experiments were carried out in an industrial scale simulator rig with an inner diameter of 1.2 m which has two test trays (ConCap tray) and two chimney trays. It was found that the weir height affects only on the pressure drop. The recommended weir height for the ConCap tray must be 2.5 cm because of observed spray flow regime on the tray and experimental results in different weir height which shows no effect on the weeping and entrainment rates. Moreover, the hydraulic behavior of the tray in the lower operating limits was also investigated.


[1] De Bruyn, G., Gangriwala, H.A., Nye, JO. ( 1992).  “High   capacity   Nye(R)   trays.”   Institution   of   Chemical Engineers Symposium Series,  1:A509- A17.
[2] Kunesh, J.G., Kister, H.Z., Lockett, M.J., Fair, J.R.  ( 1995). “Distillation: still towering over other options”. Chemical  Engineering  Progress,  Vol.  91, pp. 43-53.
[3] Bravo, J.L., Kusters, K.A. (2000). “Tray technology  for  the  new  millennium.”  Chemical  Engineering Progress,  Vol. 96, pp. 33-7.
[4] Burcher, N., Wikstrom, E., Mosca, G., Hausman,  A., Wilkinson, P.( 2007). “De-butanizer revamp  at  PreemRaff.”  Proceedings  of  Topical  Distillation Conference, AIChE,  pp. 189-204.
[5] Summers,   D.R.,   Bernard,   A.,   Villiers,   W.E.D.   (2007).  “High  capacity  tray  revamp  of  a  C2  splitter.” AIChE Proceedings of Topical Distillation  Conference,  pp. 189-204.
[6] Penciak,  J.,  Nieuwoudt,  I.,  Spencer,  G.(  2006).   “High-performance  trays:  Getting  the  best  capacity and efficiency.”  IChemE Symposium,  Vol.  152, pp. 311-6.
[7] Wilkinson,  P.,  Vos,  E.,  Konijn,  G.,  Kooijman,  H.,   Mosca, G., Tonon, L. (2007). “Distillation trays that operate beyond the limits of gravity by using centrifugal separation.”  Chemical Engineering Research and Design,  Vol. 85, pp. 130-5.
[8] Fair,  J.R.,  Trutna,  W.R.,  Seibert,  A.F.  (1999).  “A  new,   ultracapacity   tray   for   distillation   columns.” Chemical Engineering Research and Design,  Vol. 77, pp. 619-26.
[9] Trutna, WR. (1997).  Method and apparatus for  producing co-current fluid contact.  US  Patent,  5695548.
[10] Xu,  Z.P.,  Bielinski,  D.H.  (2004).  Apparatus  for  cocurrent   fractional   distillation .  US   Patent,  6682633B1.
[11] Xu, P., Nowak, B., Richardson, K. (2007). “Simul-Flow  device  capacity  beyond  system  limit.”   AIChE Meeting, Spring.
[12] Olujić, Z., Jödecke, M., Shilkin, A., Schuch, G., 52 T. Zarei et al.  /  Journal of Chemical and Petroleum Engineering, 50 (2), Feb. 2017  /  47-52 Kaibel,  B.  (2009).  “Equipment  improvement   trends  in  distillation.”  Chemical  Engineering   and Processing: Process Intensification , Vol. 48,  pp. 1089-104.
[13] Naziri,  N.,  Zadghaffari,  R.,  Naziri,  H.  (2012).”A   study  on  chimney  type  centrifugal  tray  lower  operating  limit.”  APCBEE    Procedia,   Vol.  3,  pp.   182-7.
[14] Qian,  J.,  Qi,  R.,  Zhu,  S.  (2006).  “High-powered   adaptive valve tray: A new generation tray offers  new  advantages.”   Chemical  Engineering   Research and Design,  Vol. 84, pp. 155-8.
[15] Rahimi,  R.,  Movahedi,  Parizi,  M.  (2015).  “Hydrodynamics  of  sieve  tray  distillation  column  using CFD simulation.”  Journal of Chemical and Petroleum Engineering,  Vol. 49, pp. 119-29.
[16] Zarei,  T.,  Rahimi,  R.,  Zarei,  A.,  Zivdar,  M.  (2013).   “Hydrodynamic   characteristic   of   Conical   Captray: Experimental studies on dry and total pressure drop, weeping and entrainment.”  Chemical Engineering and Processing: Process Intensification , Vol. 64, pp. 17-23.
[17] Ostadzehi,  R.,  Rahimi,  R.,  Zarei,  T.,  Zivdar,  M.   (2013). “CFD simulation of Concap tray hydrodynamics.”  Journal  of  Chemical  and  Petroleum   Engineering,  Vol. 47, pp. 39-50.
[18] Wijn, E.F. (1999). “Weir flow and liquid height  on  sieve  and  valve  trays.”   Chemical  Engineering Journal, Vol. 73, pp. 191-204.
[19] Zarei,  T.,  Rahimi,  R.,  Zivdar.  (2009).  “Computational  fluid dynamic simulation of MVG tray hydraulics.” Korean  journal  of  chemical  Engineering,  Vol. 26, pp. 1213-1219.
[20] Lockett,  M.J.  (1986).  Distillation  tray  funda­mentals.  Cambridge  University  Press:  Cambridge, UK.
[21] Kister,  H.Z.  (1992).  Distillation  operation.  McGraw Hill.