Application of “Sink & Source” and “Stream wise” Methods for Exergy Analysis of Two MED Desalination Systems

Document Type : Original Paper


Islamic Azad University of South Tehran Branch.


Utilization of fossil fuel for supplying of requires energy of desalination systems is common. On the other hand, solar energy is one of the high-grade energies in the world that can be found specifically in hot weather places. Therefore, utilization of solar energy for operation of desalination systems will reduce greenhouse gases and is a good alternative way. Common exergy analysis method (stream wise) uses input and output exergy of streams to calculate the efficiency and exergy loss. Another exergy analysis method, named “Sink & Source”, is illustrated in the present study. The Stream wise method usually computes efficiency of systems as higher than a reliable value. For example, the computed exergy efficiency of presented high capacity MED desalination system is 88.63%, while this value is estimated about 1.04% from the new method. The uselessness of the traditional method for analyzing presented low-capacity MED desalination system is also shown. For example, the computed exergy efficiency of a low-capacity desalination system was 97.51%, while a value of 42.57% was obtained from the new method. A solar field and a solar heating system are suggested for presented high capacity and low capacity MED, respectively. Furthermore, an economic analysis of afore said desalination system is presented.


[1] Nematollahi,  F.,  Rahimi,  A.,  Tavakoli  Gheinani,   T. (2013). “Experimental and theoretical energy and exergy analysis for a solar desalination  system.”  Desalination,  Vol. 317, pp. 23-31.
[2] Yang,  L.,  Shen,  T.,  Zhang,  B.  Shengqiang,  S.,   Zhang,  K.  (2013).  “Exergy  analysis  of  a  solar-assisted MED desalination experimental unit.”  Desalination and Water Treatment,  Vol. 51, No.  4-6.
[3] Li, C., Goswami, Y., Stefanakos, E. (2013). “Solar assisted sea water desalination: A review”Renewable and Sustainable  Energy  Reviews, Vol.   19, pp. 136-163.
[4] Ranjan, K.R., Kaushik, S.C. (2013). “Energy, exergy  and  thermo-economic  analysis  of  solar  distillation systems: A review”  Renewable and  Sustainable  Energy  Reviews,  Vol.  27,  pp.  709- 723.      
[5] Pavelka, M., Klika, V., Vágner, P.,  Maršík, F.  (2015).   “Generalization   of   exergy   analysis.”   Applied Energy,  Vol. 137, pp. 158-172.
[6] Seima,  R.  (2008).  “Energy  Issues  in  Desalination Processes.” Environmental Science & Technology, Vol. 42, No. 22.
[7] Ansari, K., Sayyaadi, H., Amidpour, M. (2010).  “Thermo  economic  optimization  of  a  hybrid  pressurized  water  reactor  (PWR)  power  plant  coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-TVC)”  Energy,  Vol. 35, No. 5, pp. 1981-1996.
[8] Sharaf, M.A., Nafey, A.S.,  Rodríguez, L.G. (2011).  “Exergy  and  thermo-economic  analyses  of  a  combined solar organic cycle with multi effect  distillation (MED) desalination process.” Desalination,  Vol. 272, No. 1-3, pp. 135-147.
[9] Alzahrani, A., Orfi, J., Alsuhaibani, Z. (2015).  “Performance  analysis  of  a  gas  turbine  unit  combined with MED-TVC and RO desalination systems.”  Desalination and Water  Treatment, Vol. 15, No. 12.
[10] Gnaneswar Gude, V., Nirmalakhandan, N., Deng,  S., Maganti, A. (2012). “Desalination at low temperatures: an exergy analysis.”  Desalination  and Water Treatment,   Vol. 40, pp. 272-281.
[11] Kotas,  T.J.  (1995).   The  exergy  method  of  thermal  plant  analysis.  2nd ed.,  Krieger  publishing  co
[12] Bejan, A., Tsatsaronis, G., Moran, M. (1996).  Thermal  design&  optimization.  John  Wiley  &  Sons, Inc.
[13] Duffie, J.A., Beckman, W.A. (2013).  Solar  engineering  of  thermal  processes. John  Wiley  &  Sons, Inc., pp. 25-27.
[14] Russell, G.E. (1980).  Desalination. SRI International, Report  No.133.
[15] Linear Focusing Facilities, (2016). Accessed on  23 March; nes/parabolicos.php.