Deasphalting of Olefin Pyrolysis Fuel Oil by Combination of Chemical–Physical Methods

Document Type: Research Paper

Authors

1 Chemical Engineering Department, Buein Zahra Technical University, Buein Zahra, Iran

2 National Petrochemical Company, Petrochemical Research and Technology Company -P.O. Box 1435884711, Tehran, Iran

3 Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran

Abstract

This work investigates the effect of different conditions of PFO thermal cracking from two PFO samples on liquid, solid and gas product yield and asphaltene removal efficiency in a new designed experimental setup. No need to use a catalyst, simple operating system and experiment conditions, the ability to use water as a cheap carrier gas and high asphaltene extraction efficiency without the use of solvents are outstanding benefits of this method to upgrade PFO. The yields of the liquid, solid and gas products were compared in various operating conditions and the optimum experimental conditions were obtained. The results revealed the best thermal cracking condition of PFO in terms of liquid yield and asphaltene removal in this setup for samples. The optimum conditions were 390 and 380 °C for reactor temperature of PFO-1 and PFO-2, respectively; 150 °C for temperature of carrier gas and 100 ml/min for carrier gas flow rate. In these circumstances about 70 and 53 wt% of the liquid product, 25 wt% of the solid products, and 5 wt% of the gas product are generated while the asphaltene separation was reached about 95 and 96.5%.

Keywords


[1] Andersen,  S.  I.  and  Speight,  J.  G.  (2001).   "Petroleum resins: separation, character, and role in petroleum."  Petroleum    science   and   technol ogy ,  Vol. 19, No. 1, pp. 1 -34.

[2]   Fan,  T.  and  Buckley,  J.  S.  (2002).   "Rapid  and   accurate  SARA  analysis  of  medium  gravity  crude  oils. " Energy  & Fuels, Vol.  16.  No.  6,  pp.  1571 - 1575.

[3] Kord, S.  and Ayatollahi, S. (2012). "Asphaltene  precipitation   in   live   crude   oil   during   natural  depletion:    experimental    investigation  and   modeling." Fluid  Phase  Equilibria   Vol.  336,  pp.  63–70.

[4] Leontaritis,  K.J.  and  Mansoori,  G.A.  (1988).   "Asphaltene deposition:   a survey of field     experiences and research approaches. "  Journal of  Petroleum  Science  Engineering,  Vol.  1,  No.  3,  pp.  229 – 239.

[5] Mohammadi, A.H.  and  Richon,  D.  (2007).  "A  monodisperse    thermodynamic   model   for   estimating    asphaltene    precipitation. " AIChE  Journal , Vol. 53,  No. 11, pp. 2940 – 2947.

[6] Mullins,  O.,  Sheu,  E.Y.  (1998).   Structures  and  Dynamics of Asphaltenes , New York,  Springer.

[7] Speight,   J.G.   (1991).  The  Chemistry  and  Technology of Petroleum , New York,  CRC Press.

[8] Adebiyi,  F.M.  and Thoss, V.  (2014).   "Organic  and  elemental  elucidation  of  asphaltene  fraction  of  Nigerian  crude  oils. "  Fue l,  Vol.  118,  pp.  426 –431. 

[9] Yong-jun,   L.   (2012).   "Microstructure  characterization of asphaltenes from atmospheric residue   before    and   after   hydroprocessing."  Journal  of  Fuel  Chemistry  and  Technology,  Vol.  40,  No. 9, pp.1086−1091.

[10] Lababidi, H.M., Sabti, H. M. and AlHumaidan,  F.  S.  (2014).  "Changes  in  asphaltenes  during  thermal  cracking  of  residual  oils ."  Fuel ,  Vol.  117,   pp. 59 –67.

[11] Duyck,  C.,  Miekeley,    Silveira,  C.  L.  P.  and   Szatmari,    P.    (2002).  "Trace   element      determination  in  crude  oil  and  its  fractions  by  inductively  coupled  plasma  mass  spectrometry  using   ultrasonic   nebulization   of   toluene   solutions."  Spectrochim  Acta,  Part  B ,  Vol.  57,  No.  12,  pp. 1979 -1990.

[12] Park,   S .J.   and   Mansoori,   G.   A.   (1988).    "Aggregation and Deposition of Heavy  Organics in Petroleum Crudes."   Energy Sources , Vol. 10, No. 2,  pp.109 -125.

[13] Taylor,  S.E.  (1992).   "Use  of  Surface -Tension  Measurements  to  Evaluate   Aggregation   of     Asphaltenes  in  Organic-Solvents. "  Fuel ,  Vol.  71,   pp. 1338 -1339.

[14] Thawer,  R.,  Nicoll,   D.  C.  A.  and  Dick,  G.  (1990).  "Asphaltene  Deposition   in  Production   Facilities.”  SPE  Production  Engineering ."   Vol.  5,   No. 4, pp. 475 -480.

[15] AlHumaidan,  F.,  Lababidi,  H.  M.  S.  and  Al Rabiah,  H.  (2013).   "Thermal  cracking  kinetics  of  Kuwaiti   vacuum   residues   in  Eureka   process. "  Fuel , Vol. 103, pp. 923 – 931.

[16] Silva,  F.  B.,  Guimarães,  M.  J.  O.  C.  Seidi,  P.  R.   and  Garica,  M.  E.  F.   (2013).  "Extraction   And   Characterization (Compositional And Thermal) Of   Asphaltenes  From  Brazilian  Vacuum  Residues."  Brazilian Journa l of Petroleum and Gas , Vol. 7, No.  3, pp. 107 -118.

[17] Rana,  M.S. andSámano, V., Ancheyta, J., Diaz, J.A.I. (2007).  "A review of recent advances on process technologies for upgrading of heavy oils and residuaet. "  Fuel , Vol. 86, pp.1216 -1231.

[18] Takatusuka, T.,  Watari,  R.  and  Hayakawa,  H.  (1996).  "Renewed  attention  to  the  EUREKA  pro-cess:  thermal  cracking  process  and  related  tech nologies  for  residual  oil  upgrading. "Studies in Surface Science and Catalysis,  Vol.  100,  pp.  293 –301.

[19] Shishavan,  R.,  Ghashghaee,  M.  and  Karimzadeh, R. (2011).  "Investigation of kinetics and cracked oil structural changes in thermal cracking of Iranian vacuum residues. "  Fuel  Processing  Tech –nology , Vol. 92, No. 12, pp. 2226 – 2234.

[20] Fesharaki,  M.,  Ghashghaee,   M.  and  Karimzadeh,  R.  (2013).  "Comparison  of  four  nanoporous   catalysts in thermocatalytic upgrading of vacuum  residue." Journal of Analytical and Applied  Pyrolysis,  Vol. 102, pp. 97 -102.

[21] Sawarkar,  A.  N.,  Pandit,  A.  B.,  Samant,  S.  D.  and   Joshi,  J.   B.  (2007).  "Petroleum   Residue   Upgrading  Via  Delayed  Coking:  A  Review."  The  Canadian Journal of Chemical Engineering , Vol. 85, No.1, pp. 1– 24.

[22] ASTM  D3279,  Standard  Test Method for n-Heptane Insolubles, Book of Standards  Volume: 04.03, West Conshohocken,2001.

[23] Kashirski,   V.G.   and   Petelina,   V.S.   (2001).   "Thermal   decomposition  of  the   Kenderlyk   Oil  shale under conditions of high -speed heating. "  Oil Shale, Vol. 18, No. 1,   pp. 85-91.