Evaluating the Effect of Thermal Activation on Separation Process of Insoluble Fraction of Gasoline using Red Mud

Document Type: Research Paper

Authors

Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Contamination of water resources with petroleum products is a serious environmental problem. The current study was carried out to investigate the effect of using raw and heat activated red mud (RM) as adsorbent to remove insoluble fraction of gasoline from aqueous solution. Some parameters such as pH, contact time, adsorbent dose and initial concentration were optimized in adsorption process to obtain the highest removal efficiency. Maximum removal of gasoline by raw and heat activated red mud at pH 8 and 7 were 90% and 92% respectively, during the contact time of 30 minutes, adsorbent dose of 50 g/L and 1% initial concentration of gasoline were the same for both adsorbents. Study of isotherm for raw and heat activated red mud showed high consistency with Langmuir and Freundlich isotherms, respectively. The kinetics of adsorption process was described by a pseudo-second-order model for both adsorbents. Experimental adsorption capacity of raw and heat activated red mud was achieved 0.7 and 0.66, respectively. According to the results, the adsorbents used in this study, have an appropriate efficiency for removal of the insoluble fraction of gasoline from aqueous solution.

Keywords


[1] Mortensen, J., Huang, Y., Viola, D., Belinda, J., Rmbo, X.  and  Tony,  S. (2005).   "Rice husks and oil  pollution. Basic  Studies  in  the  Natural  Sciences ."  RUC, Roskilde University.

[2] Wardley –Smith, J. (1983).   The  Control  of  Oil  Pollution.  Revised ed. Graham and Trotman Publication, London.

[3] Mulligan,  C.N.  (2005).   "Environmental  applications  for  biosurfactants."  Environmental  Pollution,  Vol. 133, No. 2, pp. 183-198.

[4] Alimahmoodi, M.  and  Mulligan,  C.N. (2011). "Optimization  of  the  anaerobic  treatment  of  a  waste  stream  from  an  enhanced  oil  recovery. "  process. Bioresource  Technology,  Vol. 102,  No.  2, pp.  690-696.

[5] Brandao,  P.C.,  Souza,  T.C., Ferreira, C.A.,  Hori,  C.E.  and Romanielo, L.L. (2010).   "Removal  Of petroleum   hydrocarbons   from   aqueous   solution  using sugarcane bagasse as adsorbent." Journal of Hazard Materials,  Vol.  175 , No.  1, pp. 1106-1112.

[6] Kenes,  K.,  Yerdos,  O., Zulkhair, M. and Yerlan, D.    (2012 ).   "Study on the effectiveness of thermally  treated  rice  husks  for  petroleum  adsorption."  Journal  of  Non-Crystalline  Solids,  Vol.  358 ,  No.  22, pp. 2964 -2969.

[7] Okie,  K.,  El   -Sayed, M. and  El-Kady,  M. (2011 ).  "Treatment of oil-water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. "  Egyptian  Journal  of  Petroleum,  Vol.  20 , No.  2, pp.  9-15.

[8] Wang, S.,  Ang,  H.M.  and Tadé, M.O. (2008).   "Novel  applications  of  red  mud  as  coagulant,  adsorbent  and  catalyst  for  environmentally  benign  processes."  Chemosphere,   Vol.  72,   No. 11,   pp.  1621-1635.

[9] Sahu,   M.K.,   Mandal,  S.,  Dash, S.S., Badhai,  P.  and  Patel,   R.K.   (2013).   "Removal  of  Pb  (II)  from   aqueous   solution   by  acid   activated   red   mud."  Journal  of  Environmental  Chemical  Engineering, Vol.  1, No.  4 , pp. 1315-1324.

[10] Li, Y., Liu, Ch., Luan, Zh., Peng, X., Zhu, Ch.,  Chen,   Zh., Zhang, Zh., Fan, J.  and   Jia,   Zh. (2006).   "Phosphate  removal  from  aqueous  solutions  using raw and activated  red  mud and fly ash."  Journal  of  Hazardous  Materials,   Vol.  137,  No.  1 ,  pp.  374-383.

[11] Zhao ,  Y.,  Yue ,  Q.,  Li ,  Q.,  Li,  Q.,  Gao ,  B.,  Han,  S.   and  Yu, H. (2012).   "Influence of sintering temperature  on  orthophosphate  and  pyrophosphate  removal  behaviors  of red  mud  granular  adsorbents  (RMGA) ."  Colloids  and  Surfaces  A:  Physiochemical  and Engineering Aspects, Vol.  394, pp.  1-7.

[12] Nadaroglu, H.,   Kalkan,  E.    and Demir,  N. (2010).   "Removal of copper from aqueous solution using red mud. "  Desalination, Vol.  251 , No. 1 ,  pp.  90-95.

[13] Mostaedi, T.M., Asadollahzadeh, M.,  Hemmati, A.  and Khosravi, A.  (2013). "Equilibrium, kinetic  and  thermodynamic  studies  for  biosorption  of  cadmium  and  nickel  on  grapefruit  peel." Journal of the Taiwan Institute of Chemical  Engineers, Vol.  44, No. 2, pp. 295 -302.

[14] Yang, Ch., Wang, J., Lei, M., Xie, G., Zeng, G. and Luo, Sh.  "Biosorption of Zinc (II) from  aqueous   solution   by   dried   activated   sludge." Journal  of  Environmental  Sciences,   Vol. 22 ,  No.  5,  pp.  675-680.

[15] Shafique, U., Jiaz, A.,  Salman,   M.,    Zaman,   W. U., Jamil, N., Rehman, R.  and  Javaid,   A. (2012 ).  "Removal   of   Arsenic   from   water   using   pine   leaves."  Journal of the Taiwan Institute of Chemical  Engineers,  Vol.  43, No.  2, pp.  256-263.

[16] Chakravarty, P., Sarma, N.S.  and Sarma, H.P.  (2010).    "Biosorption  of  Cadmium  (II)  from  aqueous  solution  using  heartwood  powder  of  Areca  catechu. "  Chemical  Engineering  Journal,  Vol. 162,  No. 3 , pp.  949-955.

[17] Gupta ,  S.  and   Babu ,  B.V.(2009).    "Utilization  of waste product  (tamarind seeds) for the removal of Cr (VI) from aqueous solutions: Equilibrium,  kinetics, and regeneration studies." Journal  of Environmental   Management, Vol.  90,   No.   10,   pp. 3013-3022.

[18] Anirudhan,   T.S.    and  Ramachandran,    M. (2014).    "Removal  of  2, 4,  6-trichlorophenol  from  water  and  petroleum  refinery  industry  effluents  by surfactant -modified  bentonite."  Journal of  Water Process Engineering, Vol. 1,  pp.  46-53.  

[19] Jimenez, M.M. D., Gonzalez, M.P.E.  and Cid, A.A.P.  (2005 ).  "Adsorption  interaction  between natural  adsorbents  and  textile  dyes  in  aqueous   solution. "  Colloids  and  Surface  A.  Physiochemical and  Engineering  Aspects,  Vol.  254 , No.  1,  pp.  107-114.

[20] Ding ,  Y.,  Jing ,  D.,Gong ,  H.,  Zhou ,  L.   and   Yang ,  X.  (2012).   "Biosorption  of  aquatic  cadmium  (II)   by  unmodified  rice  straw ."  Bioresource   Technology,  Vol. 114, pp.  20-25