PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

Document Type: Research Paper

Authors

1 Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran

2 Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran

Abstract

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (SA), temperature (T), and pressure (P) were related to the output parameter which is propylene or propane adsorption. A thorough comparison between the experimental, artificial neural network and particle swarm optimization-adaptive neuro-fuzzy inference system models was carried out to prove its efficiency in accurate prediction and computation time. The obtained results show that both investigated methods have good agreements in comparison with the experimental data, but the proposed artificial neural network structure is more precise than our proposed PSO-ANFIS structure. Mean absolute error (MAE) for ANN and ANFIS models were 0.111 and 0.421, respectively.

Keywords


[1]     Teramoto M, Shimizu S, Matsuyama H, Matsumiya N. Ethylene/ethane separation and concentration by hollow fiber facilitated transport membrane module with permeation of silver nitrate solution. Separation and Purification Technology. 2005 Jul 1;44(1):19-29.

[2]     Reine TA, Eldridge RB. Absorption equilibrium and kinetics for ethylene− ethane separation with a novel solvent. Industrial & Engineering Chemistry Research. 2005 Sep 14;44(19):7505-10.

[3]     Bao Z, Alnemrat S, Yu L, Vasiliev I, Ren Q, Lu X, Deng S. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic framework. Langmuir. 2011 Oct 12;27(22):13554-62.

[4]     Lamia N, Wolff L, Leflaive P, Sá Gomes P, Grande CA, Rodrigues AE. Propane/propylene separation by simulated moving bed I. Adsorption of propane, propylene and isobutane in pellets of 13X zeolite. Separation Science and Technology. 2007 Aug 1;42(12):2539-66.

[5]     Eldridge RB. Olefin/paraffin separation technology: a review. Industrial & engineering chemistry research. 1993 Oct;32(10):2208-12.

[6]     Ghosh TK, Lin HD, Hines AL. Hybrid adsorption-distillation process for separating propane and propylene. Industrial & Engineering Chemistry Research. 1993 Oct;32(10):2390-9.

[7]     Lamia N, Jorge M, Granato MA, Paz FA, Chevreau H, Rodrigues AE. Adsorption of propane, propylene and isobutane on a metal–organic framework: Molecular simulation and experiment. Chemical Engineering Science. 2009 Jul 15;64(14):3246-59.

[8]     Giannakopoulos IG, Nikolakis V. Recovery of hydrocarbons from mixtures containing C3H6, C3H8 and N2 using NaX membranes. Journal of Membrane Science. 2007 Nov 15;305(1-2):332-7.

[9]     Van Miltenburg A, Zhu W, Kapteijn F, Moulijn JA. Adsorptive separation of light olefin/paraffin mixtures. Chemical Engineering Research and Design. 2006 May 1;84(5):350-4.

[10]  Matsuyama E, Ikeda A, Komatsuzaki M, Sasaki M, Nomura M. High-temperature propylene/propane separation through silica hybrid membranes. Separation and Purification Technology. 2014 May 13;128:25-30.

[11]  Da Silva FA, Rodrigues AE. Propylene/propane separation by vacuum swing adsorption using 13X zeolite. AIChE Journal. 2001 Feb 1;47(2):341-57.

[12]  Da Silva FA, Rodrigues AE. Vacuum swing adsorption for propylene/propane separation with 4A zeolite. Industrial & Engineering Chemistry Research. 2001 Nov 28;40(24):5758-74.

[13]  Grande CA, Rodrigues AE. Propane/propylene separation by pressure swing adsorption using zeolite 4A. Industrial & Engineering Chemistry Research. 2005 Nov 9;44(23):8815-29.

[14]  Grande CA, Poplow F, Rodrigues AE. Vacuum pressure swing adsorption to produce polymer-grade propylene. Separation Science and Technology. 2010 May 28;45(9):1252-9.

[15]  Grande CA, Cavenati S, Barcia P, Hammer J, Fritz HG, Rodrigues AE. Adsorption of propane and propylene in zeolite 4A honeycomb monolith. Chemical Engineering Science. 2006 May 1;61(10):3053-67.

[16]  Al-Muhtaseb, S. A. (2008). Role of catalyst type in the selective separation of olefinic and paraffinic hydrocarbons using xerogel-based adsorbents. Carbon, 46(7), 1003-9.

[17]  Grande CA, Gascon J, Kapteijn F, Rodrigues AE. Propane/propylene separation with Li-exchanged zeolite 13X. Chemical Engineering Journal. 2010 May 15;160(1):207-14.

[18]  Grande CA, Firpo N, Basaldella E, Rodrigues AE. Propane/propene separation by SBA-15 and π-complexated Ag-SBA-15. Adsorption. 2005 Jul 1;11(1):775-80.

[19]  Padin J, Rege SU, Yang RT, Cheng LS. Molecular sieve sorbents for kinetic separation of propane/propylene. Chemical Engineering Science. 2000 Oct 15;55(20):4525-35.

[20]  Olson DH, inventor; University of Pennsylvania, assignee. Light hydrocarbon separation using 8-member ring zeolites. United States patent US 6,488,741. 2002 Dec 3.

[21]  Kuznicki SM, Bell VA, inventors; BASF Catalysts LLC, assignee. Olefin separations employing CTS molecular sieves. United States patent US 6,517,611. 2003 Feb 11.

[22]  Olivier MG, Bougard J, Jadot R. Adsorption of propane, propylene and propadiene on activated carbon. Applied Thermal Engineering. 1996 May 1;16(5):383-7.

[23]  Mofarahi M, Sadrameli M, Towfighi J. Characterization of activated carbon by propane and propylene adsorption. Journal of Chemical & Engineering Data. 2003 Sep 11;48(5):1256-61.

[24]  Grande CA, Rodrigues AE. Adsorption of binary mixtures of propane− propylene in carbon molecular sieve 4A. Industrial & Engineering Chemistry Research. 2004 Dec 8;43(25):8057-65.

[25]  Grande CA, Silva VM, Gigola C, Rodrigues AE. Adsorption of propane and propylene onto carbon molecular sieve. Carbon. 2003 Jan 1;41(13):2533-45.

[26]  Rege SU, Padin J, Yang RT. Olefin/paraffin separations by adsorption: π‐Complexation vs. kinetic separation. AIChE Journal. 1998 Apr 1;44(4):799-809.

[27]  Park JH, Han SS, Kim JN, Cho SH. Vacuum swing adsorption process for the separation of ethylene/ethane with AgNO 3/clay adsorbent. Korean Journal of Chemical Engineering. 2004 Jan 1;21(1):236-45.

[28]  Iucolano F, Aprea P, Caputo D, Colella C, Eić M, Huang Q. Adsorption and diffusion of propane and propylene in Ag+-impregnated MCM-41. Adsorption. 2008 Jun 1;14(2-3):241-6.

[29]  Basaldella EI, Vazquez PG, Firpo N. Synthesis of Ag/SBA-15 as adsorbent for propane/propylene separation. Studies in Surface Science and Catalysis 2005 Jan 1;158:1081-8.

[30]  Aguilar-Armenta G, Patiño-Iglesias ME. Adsorption equilibria and kinetics of propylene and propane on natural erionite and on erionite exchanged with K+ and Ag+. Langmuir. 2002 Oct 1;18(20):7456-61.

[31]  Yang RT, Kikkinides ES. New sorbents for olefin/paraffin separations by adsorption via π‐complexation. AIChE Journal. 1995 Mar 1;41(3):509-17.

[32]  Gomes PS, Lamia N, Rodrigues AE. Design of a gas phase simulated moving bed for propane/propylene separation. Chemical Engineering Science. 2009 Mar 16;64(6):1336-57.

[33]  Da Silva FA, Rodrigues AE. Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets. Industrial & Engineering Chemistry Research. 1999 May 3;38(5):2051-7.

[34]  Grande CA, Rodrigues AE. Adsorption kinetics of propane and propylene in zeolite 4A. Chemical Engineering Research and Design. 2004 Dec 1;82(12):1604-12.

[35]  Grande CA, Basaldella E, Rodrigues AE. Crystal size effect in vacuum pressure-swing adsorption for propane/propylene separation. Industrial & Engineering Chemistry Research. 2004 Nov 10;43(23):7557-65.

[36]  Merad− Dib H, Bendenia S, Merouani DR, Bendenia C, Batonneau− Gener I, Khelifa A. Adsorption of Propylene and Propane onto M n+ X (M n+= Cr3+ and/or Ni2+) Zeolites and Comparison between Binary and Ternary Exchanges. Journal of Chemical & Engineering Data. 2016 Aug 31;61(10):3510-8.

[37]  Patiño-Iglesias ME, Aguilar-Armenta G, Jiménez-López A, Rodrıguez-Castellón E. Kinetics of the total and reversible adsorption of propylene and propane on zeolite 4A (CECA) at different temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004 Apr 20;237(1-3):73-7.

[38]  Bhat N, McAvoy TJ. Use of neural nets for dynamic modeling and control of chemical process systems. Computers & Chemical Engineering. 1990 May 1;14(4-5):573-82.

[39]  Hashemipour H, Baroutian S, Jamshidi E, Abazari A. Experimental study and artificial neural networks simulation of activated carbon synthesis in fluidized bed reactor. International Journal of Chemical Reactor Engineering. 2009 Jan 1;7(1).

[40]  Nabavi R, Salari D, Niaei A, Vakil-Baghmisheh MT. A neural network approach for prediction of main product yields in methanol to olefins process. International Journal of Chemical Reactor Engineering. 2009 Jan 1;7(1).

[41]  Khataee A, Khani A. Modeling of nitrate adsorption on granular activated carbon (GAC) using artificial neural network (ANN). International Journal of Chemical Reactor Engineering. 2009 Jan 1;7(1).

[42]  Eslamloueyan R, Khademi MH. Estimation of thermal conductivity of pure gases by using artificial neural networks. International Journal of Thermal Sciences. 2009 Jun 1;48(6):1094-101.

[43]  Eslamloueyan, R., and Khademi, M. H. (2009). Using artificial neural networks for estimation of thermal conductivity of binary gaseous mixtures. Journal of Chemical & Engineering Data, 54(3), 922-932.

[44]  Eslamloueyan R, Khademi MH. A neural network-based method for estimation of binary gas diffusivity. Chemometrics and Intelligent Laboratory Systems. 2010 Dec 15;104(2):195-204.

[45]  Moradi MR, Nazari K, Alavi S, Mohaddesi M. Prediction of equilibrium conditions for hydrate formation in binary gaseous systems using artificial neural networks. Energy Technology. 2013 Mar;1(2‐3):171-6.

[46]  Moradi G, Mohadesi M, Moradi MR. Prediction of wax disappearance temperature using artificial neural networks. Journal of Petroleum Science and Engineering. 2013 Aug 1;108:74-81.

[47]  Mohadesi M, Moradi G, Mousavi HS. Estimation of binary infinite dilute diffusion coefficient using artificial neural network. Journal of Chemical and Petroleum Engineering 2014 Jun 1;48:27-45.

[48]  Moradi G, Mohadesi M, Karami B, Moradi R. Using artificial neural network for estimation of density and viscosities of biodiesel–diesel blends. Journal of Chemical and Petroleum Engineering. 2015 Dec 1;49(2):153-65.

[49]  Beigzadeh R, Rahimi M. Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations. International Communications in Heat and Mass Transfer. 2012 Dec 1;39(10):1647-53.

[50]  Rahmanian B, Pakizeh M, Mansoori SA, Esfandyari M, Jafari D, Maddah H, Maskooki A. Prediction of MEUF process performance using artificial neural networks and ANFIS approaches. Journal of the Taiwan Institute of Chemical Engineers. 2012 Jul 1;43(4):558-65.

[51]  Swain A, Das MK. Development of generalized ANFIS model for flow boiling of refrigerants on plain tube bundles. InInternational Conference on Production and Mechanical Engineering (ICPME’2014) Dec 2014;30-1.

[52]  Abbasi A, Eslamloueyan R. Determination of binary diffusion coefficients of hydrocarbon mixtures using MLP and ANFIS networks based on QSPR method. Chemometrics and Intelligent Laboratory Systems. 2014 Mar 15;132:39-51.

[53]  Ay M, Kisi O. Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. Journal of Hydrology. 2014 Apr 16;511:279-89.

[54]  Beigzadeh R, Hajialyani M, Rahimi M. Heat transfer and fluid flow modeling in serpentine microtubes using adaptive neuro-fuzzy approach. Korean Journal of Chemical Engineering. 2016 May 1;33(5):1534-50.

[55]  Ferreira AF, Santos JC, Plaza MG, Lamia N, Loureiro JM, Rodrigues AE. Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chemical Engineering Journal. 2011 Feb 15;167(1):1-2.

[56]  Plaza MG, Ribeiro AM, Ferreira A, Santos JC, Lee UH, Chang JS, Loureiro JM, Rodrigues AE. Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres. Separation and Purification Technology. 2012 Apr 27;90:109-19.

[57]  Jorge M, Lamia N, Rodrigues AE. Molecular simulation of propane/propylene separation on the metal–organic framework CuBTC. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010 Mar 20;357(1-3):27-34.

[58]  Hagan MT, Demuth HB, Beale MH. Neural network design, PWS Pub. Co., Boston. 1996;3632.

[59]  Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks. 1989 Jan 1;2(5):359-66.

[60]  Jang JS, Sun CT. Neuro-fuzzy modeling and control. Proceedings of the IEEE. 1995 Mar;83(3):378-406.

[61]  Jang JS, Sun CT, Mizutani E. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Transactions on Automatic Control. 1997 Oct;42(10):1482-4.

[62]  Kennedy J, Eberhart R. Particle swarm optimization (PSO). InProc. IEEE International Conference on Neural Networks, Perth, Australia 1995 Nov 27 (pp. 1942-1948).

[63]  Bashir ZA, El-Hawary ME. Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Transactions on Power Systems. 2009 Jan 13;24(1):20-7.