Solubility of CO2 in Aqueous Solutions of Diethanolamine (DEA) and Choline Chloride

Document Type : Research Paper


1 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran


In this study, the solubility of CO2 in DEA in the presence and absence of choline chloride was reported at different temperatures of 276.15, 298.15, 313.15, and 333.15 K, and pressure range of 4-15 bar. The solubility of CO2 was evaluated using the pressure decay method in a batch isochoric stirred absorption cell. Also, the design of experiments performed with Qualitek-4 software using the Taguchi method. Henry’s law constants at three different temperatures were calculated from the correlation of solubility data. Results showed that increasing the initial pressure and DEA concentration and also decreasing the temperature, increases the solubility of CO2. Optimum operating conditions to maximize the amount of CO2 absorption including the temperature of 276.15 K (minimum level), the initial pressure of 15 bar (maximum level), the concentration of DEA of 40 wt.% (maximum level), and the concentration of choline chloride of 5 wt.% (middle level). Also, Qualitek-4 software predicted the amount of solubility at the optimum conditions which was 7.5% different from the measured value.


[1] Choi WJ, Cho KC, Lee SS, Shim JG, Hwang HR, Park SW, Oh KJ. Removal of carbon dioxide by
absorption into blended amines: kinetics of absorption into aqueous AMP/HMDA, AMP/MDEA,
and AMP/piperazine solutions. Green Chemistry. 2007;9(6):594-8.
[2] Li J, Ye Y, Chen L, Qi Z. Solubilities of CO2 in Poly (ethylene glycols) from (303.15 to 333.15) K.
Journal of Chemical & Engineering Data. 2012 Feb 9;57(2):610-6.
[3] Bhown AS, Freeman BC. Analysis and status of post-combustion carbon dioxide capture
technologies. Environmental science & technology. 2011 Oct 15;45(20):8624-32.
[4] Goldstein AM, Brown EC, Heinzelmann FJ, Say GR. New FLEXSORB gas treating technology for
acid gas removal. Energy Progress. 1986;6(2):67-70.
[5] Samanta A, Roy S, Bandyopadhyay SS. Physical solubility and diffusivity of N2O and CO2 in
aqueous solutions of piperazine and (N-methyldiethanolamine+ piperazine). Journal of Chemical &
Engineering Data. 2007 Jul 12;52(4):1381-5.
[6] Jou FY, Mather AE, Otto FD. The solubility of CO2 in a 30 mass percent monoethanolamine
solution. The Canadian Journal of Chemical Engineering. 1995 Feb;73(1):140-7.
[7] Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L. Acute toxicity of
ionic liquids to the zebrafish (Danio rerio). Green Chemistry. 2006;8(3):238-40.
[8] Bernot RJ, Kennedy EE, Lamberti GA. Effects of ionic liquids on the survival, movement, and
feeding behavior of the freshwater snail, Physa acuta. Environmental Toxicology and Chemistry:
An International Journal. 2005 Jul;24(7):1759-65.
[9] Brennecke JF, Maginn EJ. Ionic liquids: innovative fluids for chemical processing. AIChE Journal.
2001 Nov;47(11):2384-9.
[10] Visser AE, Swatloski RP, Rogers RD. pH-dependent partitioning in room temperature ionic liquids
provides a link to traditional solvent extraction behavior. Green Chemistry. 2000;2(1):1-4.
[11] Kumełan J, Kamps AP, Tuma D, Maurer G. Solubility of CO2 in the ionic liquid [hmim][Tf2N].
The Journal of Chemical Thermodynamics. 2006 Nov 1;38(11):1396-401.
[12] Perez-Salado Kamps A, Tuma D, Xia J, Maurer G. Solubility of CO2 in the ionic liquid
[bmim][PF6]. Journal of Chemical & Engineering Data. 2003 May 8;48(3):746-9.
[13] Baltus RE, Culbertson BH, Dai S, Luo H, DePaoli DW. Low-pressure solubility of carbon dioxide
in room-temperature ionic liquids measured with a quartz crystal microbalance. The Journal of
Physical Chemistry B. 2004 Jan 15;108(2):721-7.
[14] Blanchard LA, Hancu D, Beckman EJ, Brennecke JF. Green processing using ionic liquids and CO2.
Nature. 1999 May;399(6731):28-9.
[15] Blanchard LA, Gu Z, Brennecke JF. High-pressure phase behavior of ionic liquid/CO2 systems. The
Journal of Physical Chemistry B. 2001 Mar 29;105(12):2437-44.
[16] Husson-Borg P, Majer V, Costa Gomes MF. Solubilities of oxygen and carbon dioxide in butyl
methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to
atmospheric pressure. Journal of Chemical & Engineering Data. 2003 May 8;48(3):480-5.
[17] Ye C, Shreeve JN. Rapid and accurate estimation of densities of room-temperature ionic liquids and
salts. The Journal of Physical Chemistry A. 2007 Mar 1;111(8):1456-61.
[18] Latała A, Stepnowski P, Nędzi M, Mrozik W. Marine toxicity assessment of imidazolium ionic
liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquatic
toxicology. 2005 Jun 1;73(1):91-8.
[19] Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chemistry. 2006;8(1):82-90.
[20] Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society. 2004 Jul 28;126(29):9142-7.
[21] Leron RB, Li MH. Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. Thermochimica acta. 2013 Jan 10;551:14-9.
[22] Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications. 2003(1):70-1.
[23] Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IW, Witkamp GJ, Verpoorte R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?. Plant physiology. 2011 Aug 1;156(4):1701-5.
[24] Francisco M, van den Bruinhorst A, Kroon MC. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chemistry. 2012;14(8):2153-7.
[25] de María PD, Maugeri Z. Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Current opinion in chemical biology. 2011 Apr 1;15(2):220-5.
[26] Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MK, Bagh FS, Alnashef IM. Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha. Fluid Phase Equilibria. 2012 Nov 15;333:47-54.
[27] Cojocaru P, Magagnin L, Gomez E, Valles E. Using deep eutectic solvents to electrodeposit CoSm films and nanowires. Materials Letters. 2011 Dec 1;65(23-24):3597-600.
[28] Keskin S, Kayrak-Talay D, Akman U, Hortaçsu Ö. A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluids. 2007 Nov 1;43(1):150-80.
[29] Bates ED, Mayton RD, Ntai I, Davis JH. CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society. 2002 Feb 13;124(6):926-7.
[30] Gutowski KE, Maginn EJ. Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. Journal of the American Chemical Society. 2008 Nov 5;130(44):14690-704.
[31] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. Journal of Membrane Science. 2008 Apr 30;314(1-2):1-4.
[32] Chinn, D.; Vu, D.Q.; Driver, M.S., CO2 removal from gas using ionic liquid absorbents. Boudreau, US Patent 20060251558, 2006.
[33] Husson P, Pison L, Jacquemin J, Gomes MF. Influence of water on the carbon dioxide absorption by 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide. Fluid phase equilibria. 2010 Jul 15;294(1-2):98-104.
[34] Shiflett MB, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4]. Industrial & Engineering Chemistry Research. 2005 Jun 8;44(12):4453-64.
[35] Ahmady A, Hashim MA, Aroua MK. Experimental investigation on the solubility and initial rate of absorption of CO2 in aqueous mixtures of methyldiethanolamine with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Journal of Chemical & Engineering Data. 2010 Dec 9;55(12):5733-8.
[36] Maginn E. Design and evaluation of ionic liquids as novel CO2 absorbents quarterly technical report [Doctoral dissertation]. Morgan City: National Energy Technology Laboratory; 2006
[37] Leron RB, Caparanga A, Li MH. Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T= 303.15–343.15 K and moderate pressures. Journal of the Taiwan Institute of Chemical Engineers. 2013 Nov 1;44(6):879-85.
[38] Li X, Hou M, Han B, Wang X, Zou L. Solubility of CO2 in a choline chloride+ urea eutectic mixture. Journal of Chemical & Engineering Data. 2008 Feb 14;53(2):548-50.
[39] Francisco M, van den Bruinhorst A, Zubeir LF, Peters CJ, Kroon MC. A new low transition temperature mixture (LTTM) formed by choline chloride+ lactic acid: Characterization as solvent for CO2 capture. Fluid Phase Equilibria. 2013 Feb 25;340:77-84.
[40] Barbosa LC, Araújo OD, de Medeiros JL. Carbon capture and adjustment of water and hydrocarbon dew-points via absorption with ionic liquid [Bmim][NTf2] in offshore processing of CO2-rich natural gas. Journal of Natural Gas Science and Engineering. 2019 Jun 1;66:26-41.
[41] Filippov A, Bhattacharyya S, Shah FU. CO2 absorption and ion mobility in aqueous choline-based ionic liquids. Journal of Molecular Liquids. 2019 Feb 15;276:748-52.
[42] Palomar J, Larriba M, Lemus J, Moreno D, Santiago R, Moya C, De Riva J, Pedrosa G. Demonstrating the key role of kinetics over thermodynamics in the selection of ionic liquids for CO2 physical absorption. Separation and Purification Technology. 2019 Apr 15;213:578-86.
[43] Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Industrial & Engineering Chemistry Research. 2009 Mar 18;48(6):2739-51.
[44] Camper D, Bara JE, Gin DL, Noble RD. Room-temperature ionic liquid− amine solutions: tunable solvents for efficient and reversible capture of CO2. Industrial & Engineering Chemistry Research. 2008 Nov 5;47(21):8496-8.
[45] Khodajoo M, Sayyahi S, Saghanezhad SJ. Straightforward and solvent-free synthesis of 2-amino-4H-chromenes in the presence of a choline-based magnetic ionic liquid as catalyst. Russian Journal of General Chemistry. 2016 May 1;86(5):1177-81.
[46] Bohloul MR, Vatani A, Peyghambarzadeh SM. Experimental and theoretical study of CO2 solubility in N-methyl-2-pyrrolidone (NMP). Fluid Phase Equilibria. 2014 Mar 15;365:106-11.
[47] Azizi S, Dezfuli HT, Kargari A, Peyghambarzadeh SM. Experimental measurement and thermodynamic modeling of propylene and propane solubility in N-methyl pyrrolidone (NMP). Fluid Phase Equilibria. 2015 Feb 15;387:190-7.
[48] Bohloul MR, Peyghambarzadeh SM, Lee A, Vatani A. Experimental and analytical study of solubility of carbon dioxide in aqueous solutions of potassium carbonate. International Journal of Greenhouse Gas Control. 2014 Oct 1;29:169-75.
[49] Azizi S, Peyghambarzadeh SM, Saremi M, Tahmasebi H. Gas absorption using a nanofluid solvent: kinetic and equilibrium study. Heat and Mass Transfer. 2014 Dec 1;50(12):1699-706.
[50] Bermejo MD, Martin A, Florusse LJ, Peters CJ, Cocero MJ. The influence of Na2SO4 on the CO2 solubility in water at high pressure. Fluid Phase Equilibria. 2005 Dec 20;238(2):220-8.
[51] Taib MM, Murugesan T. Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa. Chemical Engineering Journal. 2012 Feb 1;181:56-62.
[52] Shokouhi M, Farahani H, Hosseini-Jenab M, Jalili AH. Solubility of hydrogen sulfide in N-methylacetamide and N, N-dimethylacetamide: experimental measurement and modeling. Journal of Chemical & Engineering Data. 2015 Mar 12;60(3):499-508.
[53] Shokouhi M, Zoghi AT, Vahidi M, Moshtari B. Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine. Journal of Chemical & Engineering Data. 2015 May 14;60(5):1250-8.
[54] Roeentan H, Azizi S, Bakeri G, Peyghambarzadeh SM. Experimental measurement of propane and propylene absorption in NMP/AgNO3 solvent. Chemical Engineering Research and Design. 2017 Jan 1;117:240-9.
[55] Bohloul MR, Sadeghabadi MA, Peyghambarzadeh SM, Dehghani MR. CO2 absorption using aqueous solution of potassium carbonate: Experimental measurement and thermodynamic modeling. Fluid Phase Equilibria. 2017 Sep 15;447:132-41.
[56] Moffat RJ. Describing the uncertainties in experimental results. Experimental thermal and fluid science. 1988 Jan 1;1(1):3-17.
[57] Taguchi G, Jugulum R. The Mahalanobis-Taguchi strategy: A pattern technology system. John Wiley & Sons; 2002 May 23.
[58] Roy RK. Design of experiments using the Taguchi approach, John Willey & Sons. Inc., New York. 2001.
[59] Vermahmoudi Y, Peyghambarzadeh SM, Naraki M, Hashemabadi SH. Statistical analysis of nanofluid heat transfer in a heat exchange system. Journal of thermophysics and heat transfer. 2013 Apr;27(2):320-5.
[60] Chou CS, Wu CY, Yeh CH, Yang RY, Chen JH. The optimum conditions for solid-state-prepared (Y3− xCex) Al5O12 phosphor using the Taguchi method. Advanced Powder Technology. 2012 Jan 1;23(1):97-103.
[61] Azizi S, Kargari A, Kaghazchi T. Experimental and theoretical investigation of molecular diffusion coefficient of propylene in NMP. Chemical Engineering Research and Design. 2014 Jul 1;92(7):1201-9.
[62] Prausnitz JM, Lichtenthaler RN, De Azevedo EG. Molecular thermodynamics of fluid-phase equilibria. Pearson Education; 1998 Oct 22.
[63] Liu Y, Hou M, Yang G, Han B. Solubility of CO2 in aqueous solutions of NaCl, KCl, CaCl2 and their mixed salts at different temperatures and pressures. The Journal of supercritical fluids. 2011 Mar 1;56(2):125-9.