Due to high storage capacity, high dissociation enthalpy, and the appropriate melting point of gas hydrates, these compounds have a potential for many industrial applications. Tetra n-butylammonium halides are typical guest molecule involved in the formation of semiclathrate hydrates. In this manuscript, the dissociation enthalpy of methane/carbon dioxide/nitrogen + Tetra n-butylammonium Chloride semiclathrate hydrates is evaluated using the Clausius-Clapeyron equation. The equilibrium data are measured in a 460 cm3 stirred batch reactor using an isochoric pressure-search method. The dissociation enthalpy data were evaluated in the temperature range of (275.15 to 304.75) K and the pressure range of (0.36 to 10.57) MPa at (0 - 0.36) mass fraction of Tetra n-butylammonium Chloride. The results showed that the utilization of Tetra n-butylammonium Chloride increases the amount of dissociation enthalpy of semiclathrate hydrates per mole of the hydrated gas. By increasing the mass fraction of Tetra n-butylammonium Chloride, the amount of dissociation enthalpy per mole of hydrated gas increased.
Sloan JED, Koh KA. Clathrate Hydrates of Natural Gases. 3rd ed. ed: CRC Press, Taylor & Francis Group, 2008.
Khokhar A, Gudmundsson J, Sloan E. Gas storage in structure H hydrates. Fluid Phase Equilibria. 1998;150:383-92.
Sloan D. Natural Gas Hydrates in Flow Assurance. Boston: Gulf Professional Publishing; 2011. p. 1-11.
Wu Q, Yu Y, Zhang B, Gao X, Zhang Q. Effect of temperature on safety and stability of gas hydrate during coal mine gas storage and transportation. Safety Science. 2019;118:264-72.
Chaturvedi E, Prasad N, Mandal A. Enhanced formation of methane hydrate using a novel synthesized anionic surfactant for application in storage and transportation of natural gas. Journal of Natural Gas Science and Engineering. 2018;56:246-57.
Hassan H, Javidani AM, Mohammadi A, Pahlavanzadeh H, Abedi-Farizhendi S, Mohammadi AH. Effects of Graphene Oxide Nanosheets and Al2O3 Nanoparticles on CO2 Uptake in Semi‐clathrate Hydrates. Chemical Engineering & Technology. 2021;44(1):48-57.
Mohammadi A, Fazli RH, Asil AG. Influence of Tetra n-Butylammonium Chloride and Polysorbate 80 on the Kinetics of Methane Hydrate Formation. Journal of the Japan Petroleum Institute. 2021;64(1):22-8.
Fakharian H, Ganji H, Naderifar A, Mofrad HR, Kakavand M. Effect of gas type and salinity on performance of produced water desalination using gas hydrates. Journal of Water Reuse and Desalination. 2019.
Babu P, Nambiar A, He T, Karimi IA, Lee JD, Englezos P, et al. A review of clathrate hydrate based desalination to strengthen energy–water nexus. ACS Sustainable Chemistry & Engineering. 2018;6(7):8093-107.
Linga P, Babu P, Nambiar A. Effect of NaCl on clathrate hydrate based desalination HyDesal process with fixed bed approach. Conference Effect of NaCl on clathrate hydrate based desalination HyDesal process with fixed bed approach, 2018. Hamad bin Khalifa University Press (HBKU Press), p. EEPP1035.
Pahlavanzadeh H, Javidani AM, Ganji H, Mohammadi A. Investigation of the Effect of NaCl on the Kinetics of R410a Hydrate Formation in the Presence and Absence of Cyclopentane with Potential Application in Hydrate-based Desalination. Industrial & Engineering Chemistry Research. 2020;59(31):14115-25.
Dashti H, Lou X. Gas Hydrate-Based CO 2 Separation Process: Quantitative Assessment of the Effectiveness of Various Chemical Additives Involved in the Process. Conference Gas Hydrate-Based CO 2 Separation Process: Quantitative Assessment of the Effectiveness of Various Chemical Additives Involved in the Process. Springer, p. 3-16.
Warrier P, Naveed Khan M, Carreon MA, Peters CJ, Koh CA. Integrated gas hydrate-membrane system for natural gas purification. Journal of Renewable and Sustainable Energy. 2018;10(3):034701.
Gupta P, Sangwai JS. Semiclathrate Hydrate of Methane and Quaternary Ammonium Salts for Natural Gas Storage and Gas Separation. Conference Semiclathrate Hydrate of Methane and Quaternary Ammonium Salts for Natural Gas Storage and Gas Separation. Offshore Technology Conference.
Veluswamy HP, Kumar A, Seo Y, Lee JD, Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy. 2018;216:262-85.
Kiran BS, Sowjanya K, Prasad PS, Yoon J-H. Experimental investigations on tetrahydrofuran–methane–water system: Rapid methane gas storage in hydrates. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles. 2019;74:12.
Kumar A, Veluswamy HP, Kumar R, Linga P. Rapid Methane Storage in Seawater Via Clathrate Hydrates. Available at SSRN 3212833. 2018.
Delahaye A, Fournaison L, Dalmazzone D. Use of Hydrates for Cold Storage and Distribution in Refrigeration and Air‐Conditioning Applications. Gas Hydrates 2: Geoscience Issues and Potential Industrial Applications. 2018:315-58.
Mohammadi A, Jodat A. Investigation of the kinetics of TBAB+ carbon dioxide semiclathrate hydrate in presence of tween 80 as a cold storage material. Journal of Molecular Liquids. 2019;293:111433.
Xie N, Tan C, Yang S, Liu Z. Conceptual design and analysis of a novel CO2 hydrate-based refrigeration system with cold energy storage. ACS Sustainable Chemistry & Engineering. 2018;7(1):1502-11.
Mohammadi A. The roles TBAF and SDS on the kinetics of methane hydrate formation as a cold storage material. Journal of Molecular Liquids. 2020;309:113175.
Javidani AM, Abedi-Farizhendi S, Mohammadi A, Mohammadi AH, Hassan H, Pahlavanzadeh H. Experimental study and kinetic modeling of R410a hydrate formation in presence of SDS, tween 20, and graphene oxide nanosheets with application in cold storage. Journal of Molecular Liquids. 2020;304:112665.
Sun S, Zhao J, Yu D. Dissociation enthalpy of methane hydrate in salt solution. Fluid Phase Equilibria. 2018;456:92-7.
Kang S-P, Lee H, Ryu B-J. Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen,(carbon dioxide+ nitrogen), and (carbon dioxide+ nitrogen+ tetrahydrofuran). The Journal of Chemical Thermodynamics. 2001;33(5):513-21.
Sugahara T, Machida H, Muromachi S, Tenma N. Thermodynamic properties of tetra-n-butylammonium 2-ethylbutyrate semiclathrate hydrate for latent heat storage. International Journal of Refrigeration. 2019;106:113-9.
Shi L, Liang D. Semiclathrate hydrate phase behaviour and structure for CH4 in the presence of tetrabutylammonium fluoride (TBAF). The Journal of Chemical Thermodynamics. 2019;135:252-9.
Shimada M, Shimada J, Sugahara T, Tsunashima K. Phase equilibrium relations for tetra-n-butylphosphonium acetate semiclathrate hydrate systems in the presence of methane, carbon dioxide, nitrogen, or ethane. Fluid Phase Equilibria. 2019;488:48-53.
Ilani-Kashkouli P, Hashemi H, Basdeo A, Naidoo P, Ramjugernath D. Hydrate Dissociation Data for the Systems (CO2/CH4/Ar)+ Water with (TBAF/TBAA/TBPB/TBANO3 and Cyclopentane). Journal of Chemical & Engineering Data. 2019.
Shi L, Yi L, Shen X, Wu W, Liang D. Dissociation Temperatures of Mixed Semiclathrate Hydrates Formed with Tetrabutylammonium Bromide Plus Tetrabutylammonium Chloride. Journal of Chemical & Engineering Data. 2016;61(6):2155-9.
Sangwai JS, Oellrich L. Phase equilibrium of semiclathrate hydrates of methane in aqueous solutions of tetra-n-butyl ammonium bromide (TBAB) and TBAB–NaCl. Fluid Phase Equilibria. 2014;367:95-102.
Deschamps J, Dalmazzone D. Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2+ CO2 and CH4+ CO2. Journal of thermal analysis and calorimetry. 2009;98(1):113-8.
Sugahara T, Machida H. Dissociation and Nucleation of Tetra-n-butyl Ammonium Bromide Semi-Clathrate Hydrates at High Pressures. Journal of Chemical & Engineering Data. 2017;62(9):2721-5.
Lin W, Delahaye A, Fournaison L. Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2+TBAB. Fluid Phase Equilibria. 2008;264(1):220-7.
Javidani AM, Abedi-Farizhendi S, Mohammadi A, Hassan H, Mohammadi AH, Manteghian M. The effects of graphene oxide nanosheets and Al2O3 nanoparticles on the kinetics of methane+ THF hydrate formation at moderate conditions. Journal of Molecular Liquids. 2020;316:113872.
Mohammadi A, Manteghian M, Haghtalab A, Mohammadi AH, Rahmati-Abkenar M. Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS. Chemical Engineering Journal. 2014;237:387-95.
Abedi-Farizhendi S, Iranshahi M, Mohammadi A, Manteghian M, Mohammadi AH. Kinetic study of methane hydrate formation in the presence of carbon nanostructures. Petroleum Science. 2019;16(3):657-68.
Sloan E, Fleyfel F. Hydrate dissociation enthalpy and guest size. Fluid Phase Equilibria. 1992;76:123-40.
Peng DY, Robinson DB. A New two Constant Equation of State. Ind Eng Chem Fundam. 1976;15:59-64.
Mohammadi A, Manteghian M, Mohammadi AH. Phase equilibria of semiclathrate hydrates for methane+ tetra n-butylammonium chloride (TBAC), carbon dioxide+ TBAC, and nitrogen+ TBAC aqueous solution systems. Fluid Phase Equilibria. 2014;381:102-7.
Kamran-Pirzaman A, Pahlavanzadeh H, Mohammadi AH. Hydrate phase equilibria of furan, acetone, 1, 4-dioxane, TBAC and TBAF. The Journal of Chemical Thermodynamics. 2013;64:151-8.
Sun Z-G, Liu C-G. Equilibrium conditions of methane in semiclathrate hydrates of tetra-n-butylammonium chloride. Journal of Chemical & Engineering Data. 2012;57(3):978-81.
Makino T, Yamamoto T, Nagata K, Sakamoto H, Hashimoto S, Sugahara T, et al. Thermodynamic Stabilities of Tetra-n-butyl Ammonium Chloride + H2, N2, CH4, CO2, or C2H6 Semiclathrate Hydrate Systems. Journal of Chemical & Engineering Data. 2010;55(2):839-41.
Li S, Fan S, Wang J, Lang X, Wang Y. Semiclathrate Hydrate Phase Equilibria for CO2 in the Presence of Tetra-n-butyl Ammonium Halide (Bromide, Chloride, or Fluoride). Journal of Chemical & Engineering Data. 2010;55(9):3212-5.
Mayoufi N, Dalmazzone D, Fürst W, Delahaye A, Fournaison L. CO2 Enclathration in Hydrates of Peralkyl-(Ammonium/Phosphonium) Salts: Stability Conditions and Dissociation Enthalpies. Journal of Chemical & Engineering Data. 2009;55(3):1271-5.
Van Cleeff A, Diepen GAM. Gas hydrates of nitrogen and oxygen. Recueil des Travaux Chimiques des Pays-Bas. 1960;79(6):582-6.
Mohammadi, A. , Aryaeipanah, M. and Hakimizadeh, M. (2022). Dissociation Enthalpy of Methane/Carbon dioxide/Nitrogen and Tetra n-butylammonium Chloride Semiclathrate Hydrates Using the Clausius-Clapeyron Equation. Journal of Chemical and Petroleum Engineering, 56(1), 123-131. doi: 10.22059/jchpe.2022.335066.1373
MLA
Mohammadi, A. , , Aryaeipanah, M. , and Hakimizadeh, M. . "Dissociation Enthalpy of Methane/Carbon dioxide/Nitrogen and Tetra n-butylammonium Chloride Semiclathrate Hydrates Using the Clausius-Clapeyron Equation", Journal of Chemical and Petroleum Engineering, 56, 1, 2022, 123-131. doi: 10.22059/jchpe.2022.335066.1373
HARVARD
Mohammadi, A., Aryaeipanah, M., Hakimizadeh, M. (2022). 'Dissociation Enthalpy of Methane/Carbon dioxide/Nitrogen and Tetra n-butylammonium Chloride Semiclathrate Hydrates Using the Clausius-Clapeyron Equation', Journal of Chemical and Petroleum Engineering, 56(1), pp. 123-131. doi: 10.22059/jchpe.2022.335066.1373
CHICAGO
A. Mohammadi , M. Aryaeipanah and M. Hakimizadeh, "Dissociation Enthalpy of Methane/Carbon dioxide/Nitrogen and Tetra n-butylammonium Chloride Semiclathrate Hydrates Using the Clausius-Clapeyron Equation," Journal of Chemical and Petroleum Engineering, 56 1 (2022): 123-131, doi: 10.22059/jchpe.2022.335066.1373
VANCOUVER
Mohammadi, A., Aryaeipanah, M., Hakimizadeh, M. Dissociation Enthalpy of Methane/Carbon dioxide/Nitrogen and Tetra n-butylammonium Chloride Semiclathrate Hydrates Using the Clausius-Clapeyron Equation. Journal of Chemical and Petroleum Engineering, 2022; 56(1): 123-131. doi: 10.22059/jchpe.2022.335066.1373