Desulfurization Capabilities of Indigenous Bacteria Isolates for Enhanced Sulfur Removal

Document Type : Research Paper

Authors

1 Department Of Chemical Engineering, KNUST, Kumasi-Ghana

2 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon – Ghana

3 Department of Chemical Engineering, KNUST, Kumasi-Ghana.

4 Kumasi Centre for Collaborative Research in Tropical Medicine, KNUST-Kumasi, Ghana.

Abstract

Desulfurization is an essential part of refinery operations due to the numerous effects of sulfur on refinery equipment and fuel product quality. Biocatalytic desulfurization methods potentially promote energy savings due to the mild temperature, and low-pressure operating conditions involved. Furthermore, the biological process results in a negligible level of undesirable products and emissions without lowering the calorific value of the fuel. In this study, indigenous microorganisms that thrive in hydrocarbon environments were isolated, characterized, and identified from waste oil dump sites at major garages in the Kumasi Metropolis, Ghana, and used to desulfurize crude oil.  Preliminary screening resulted in 132 microbial isolates with 26 most potent isolates selected for the final identification and their use for desulfurization.  The isolates identified included Stenotrophomonas maltophilia, pseudomonas aeruginosa, alcaligenes faecalis, enterococcus faecalis, xanthomonas maltophilia, pseudomonas maltophilia, and pseudomonas putida. The highest level of desulfurization was 73.5% at 40 ℃ by stenotrophomonas maltophilia. An isolate of Enterococcus faecalis, which has not been widely explored for its sulfur removal potential could remove 61% sulfur from crude oil and is worth further research.

Keywords

Main Subjects


[1] El Morabet R. Effects of outdoor air pollution on human health. https://doi.org/10.1016/B978-0-12-409548-9.11509-X
[2] Thurston GD. Outdoor air pollution: sources, atmospheric transport, and human health effects. https://doi.org/10.1016/B978-0-12-803678-5.00320-9
[3] Jain R. Environmental impact of mining and mineral processing: management, monitoring, and auditing strategies. Butterworth-Heinemann; 2015 Aug 3. https://doi.org/10.1016/C2014-0-05174-X
[4] Agarwal P, Sharma DK. Comparative studies on the bio-desulfurization of crude oil with other desulfurization techniques and deep desulfurization through integrated processes. Energy & Fuels. 2010 Jan 21;24(1):518-24. https://doi.org/doi:10.1021/ef900876j
[5] Lecrenay E, Sakanishi K, Mochida I. Catalytic hydrodesulfurization of gas oil and model sulfur compounds over commercial and laboratory-made CoMo and NiMo catalysts: Activity and reaction scheme. Catalysis Today. 1997 Dec 3;39(1-2):13-20. https://doi.org/10.1016/S0920-5861(97)00084-9
[6] Nassar HN, Abu Amr SS, El-Gendy NS. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environmental Science and Pollution Research. 2021 Feb;28:8102-16. https://doi.org/10.1007/s11356-020-11090-7
[7] Ismagilov Z, Yashnik S, Kerzhentsev M, Parmon V, Bourane A, Al-Shahrani FM, Hajji AA, Koseoglu OR. Oxidative desulfurization of hydrocarbon fuels. Catalysis Reviews. 2011 Jul 1;53(3):199-255. https://doi.org/10.1080/01614940.2011.596426
[8] Rajendran A, Cui TY, Fan HX, Yang ZF, Feng J, Li WY. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. Journal of Materials Chemistry A. 2020;8(5):2246-85. https://doi.org/10.1039/c9ta12555h
[9] Abdulqahar SN, Abdulwahab MI, Hummadi KK. Reuse of spent hydrotreating catalyst of the middle petroleum fractions. Iraqi Journal of Chemical and Petroleum Engineering. 2019 Mar 30;20(1):15-22. https://doi.org/10.31699/ijcpe.2019.1.3
[10] Mohammed WT, Almilly RF, Al-Ali SB. Desulfurization of diesel fuel by oxidation and solvent extraction. Journal of Engineering. 2015 Feb 1;21(2):87-102. https://doi.org/10.31026/j.eng.2015.02.06 
[11] Abro R, Abdeltawab AA, Al-Deyab SS, Yu G, Qazi AB, Gao S, Chen X. A review of extractive desulfurization of fuel oils using ionic liquids. Rsc Advances. 2014;4(67):35302-17. https://doi.org/10.1039/c4ra03478c
[12] Majid MF, Zaid HF, Kait CF, Jumbri K, Yuan LC, Rajasuriyan S. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. Journal of Molecular Liquids. 2020 May 15;306:112870. https://doi.org/10.1016/j.molliq.2020.112870
[13] Zhang XF, Wang Z, Feng Y, Zhong Y, Liao J, Wang Y, Yao J. Adsorptive desulfurization from the model fuels by functionalized UiO-66 (Zr). Fuel. 2018 Dec 15;234:256-62. https://doi.org/10.1016/j.fuel.2018.07.035
[14] Al-Bidry MA, Azeez RA. Removal sulfur components from heavy crude oil by natural clay. Ain Shams Engineering Journal. 2020 Dec 1;11(4):1265-73. https://doi.org/10.1016/j.asej.2020.03.010
[15] Javadli R, De Klerk A. Desulfurization of heavy oil. Applied petrochemical research. 2012 Mar;1:3-19. https://doi.org/10.1007/s13203-012-0006-6
[16] Soleimani M, Bassi A, Margaritis A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnology advances. 2007 Nov 1;25(6):570-96. https://doi.org/10.1016/j.biotechadv.2007.07.003
[17] Chaudhary S, Dhanker R, Singh K, Brar B, Goyal S. Characterization of sulfur‐oxidizing bacteria isolated from mustard (Brassica juncea L.) rhizosphere having the capability of improving sulfur and nitrogen uptake. Journal of Applied Microbiology. 2022 Nov 1;133(5):2814-25.
[18] Rath K, Mishra B, Vuppu S. Biodegrading ability of organo-sulfur compound of a newly isolated microbe Bacillus sp. KS1 from the oil contaminated soil. Archives of Applied Science Research. 2012;4(1):465-71.
[19] de Azambuja AO, Bücker F, de Quadros PD, Zhalnina K, Dias R, Vacaro BB, Correa C, Ferrão MF, de Oliveira Camargo FA, Triplett E, Bento FM. Microbial community composition in Brazilian stored diesel fuel of varying sulfur content, using high-throughput sequencing. Fuel. 2017 Feb 1;189:340-9. https://doi.org/10.1016/j.fuel.2016.10.108
[20] Fierer N, Lennon JT. The generation and maintenance of diversity in microbial communities. American journal of botany. 2011 Mar;98(3):439-48. https://doi.org/10.3732/ajb.1000498
[21] Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences. 2006 Jan 17;103(3):626-31. https://doi.org/10.1073/pnas.0507535103
[22] Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and environmental microbiology. 2009 Aug 1;75(15):5111-20. https://doi.org/10.1128/AEM.00335-09
[23] Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier FL, Moscatelli MC, Marinari SA. Soil enzymology: classical and molecular approaches. Biology and fertility of soils. 2012 Oct;48:743-62. https://doi.org/10.1007/s00374-012-0723-0
[24] Al-Khazaali WM, Ataei SA. Optimization of Biodesulfurization of sour heavy crude oil. PLoS One. 2023 Apr 4;18(4):e0283285.  https://doi.org/10.1371/journal.pone.0283285
[25] Sadare OO, Obazu F, Daramola MO. Biodesulfurization of petroleum distillates—current status, opportunities and future challenges. Environments. 2017 Nov 25;4(4):85. https://doi.org/10.3390/environments4040085
[26] Kalita M, Sangannavar PA, Chutia M, Jha DK, Sathyanarayana K, Kumar JS, Subrahmanyam G. Microbial biodesulfurization: a sustainable technology for refining fossil fuels. InMicrobial Resource Technologies for Sustainable Development 2022 Jan 1 (pp. 333-351). Elsevier. https://doi.org/10.1016/B978-0-323-90590-9.00019-5
[27] Agarwal M, Dikshit PK, Bhasarkar JB, Borah AJ, Moholkar VS. Physical insight into ultrasound-assisted biodesulfurization using free and immobilized cells of Rhodococcus rhodochrous MTCC 3552. Chemical Engineering Journal. 2016 Jul 1;295:254-67. https://doi.org/10.1016/j.cej.2016.03.042
[28] Mamuad RY, Choi AE. Biodesulfurization processes for the removal of sulfur from diesel oil: a perspective report. Energies. 2023 Mar 15;16(6):2738. https://doi.org/10.3390/en16062738
[29] Wang J, Butler III RR, Wu F, Pombert JF, Kilbane JJ, Stark BC. Enhancement of microbial biodesulfurization via genetic engineering and adaptive evolution. PLoS One. 2017 Jan 6;12(1):e0168833. https://doi.org/10.1371/journal.pone.0168833
[30] Parveen S, Akhtar N, Ghauri MA, Akhtar K. Conventional genetic manipulation of desulfurizing bacteria and prospects of using CRISPR-Cas systems for enhanced desulfurization activity. Critical reviews in microbiology. 2020 May 3;46(3):300-20. https://doi.org/10.1080/1040841X.2020.1772195
[31] Li L, Liao Y, Luo Y, Zhang G, Liao X, Zhang W, Zheng S, Han S, Lin Y, Liang S. Improved efficiency of the desulfurization of oil sulfur compounds in Escherichia coli using a combination of desensitization engineering and DszC overexpression. ACS Synthetic Biology. 2019 May 27;8(6):1441-51. https://doi.org/10.1021/acssynbio.9b00126
[32] Saha B, Vedachalam S, Dalai AK. Review on recent advances in adsorptive desulfurization. Fuel Processing Technology. 2021 Apr 1;214:106685. https://doi.org/10.1016/j.fuproc.2020.106685
[33] Mishra S, Panda S, Pradhan N, Satapathy D, Biswal SK, Mishra BK. Insights into DBT biodegradation by a native Rhodococcus strain and its sulfur removal efficacy for two Indian coals and calcined pet coke. International Biodeterioration & Biodegradation. 2017 May 1;120:124-34. https://doi.org/10.1016/j.ibiod.2017.02.007
[34] Abeka H. Use of biochar to enhance bioremediation of an oxisol contaminated with diesel oil. https://ugspace.ug.edu.gh/bitstream/handle/123456789/7100/bitstream_26965.pdf?sequence=6&isAllowed=y
[35] Farshid, K., Parvaneh, S., Hooshang, J., and  Yaghoob, T. (2011). Isolation and identification of hydrocarbons degrading bacteria in soil around Shiraz Refinery. African Journal of Microbiology Research, 5(19), 3084–3089. https://doi.org/10.5897/ajmr11.195. https://doi.org/10.5897/ajmr11.195
[36] Pokethitiyook P, Tangaromsuka J, Kruatrachue M, Kalambahetib C, Borole A. Biological removal of organic sulfur by bacterial strains isolated in Thailand. Science Asia. 2008 Dec 1;34(4):361-6. https://doi.org/10.2306/scienceasia1513-1874.2008.34.361
[37] Lyu Y, Zhang T, Dou B, Li G, Ma C, Li Y. A lipopeptide biosurfactant from Bacillus sp. Lv13 and their combined effects on biodesulfurization of dibenzothiophene. RSC advances. 2018;8(68):38787-91. https://doi.org/10.1039/C8RA06693K
[38] Shahaliyan F, Safahieh A, Abyar H. Evaluation of emulsification index in marine bacteria Pseudomonas sp. and Bacillus sp. Arabian Journal for Science and Engineering. 2015 Jul;40:1849-54. https://doi.org/10.1007/s13369-015-1663-4
[39] Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ. Utilization of organosulfur  compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. Microbiology. 1993 Dec;139(12):3123-9. https://doi.org/10.1099/00221287-139-12-3123
[40] Chalini K, Johnson M, Almeida RS, Coutinho HD. Optimization of DNA isolation and amplification protocol for Gracilaria and Sargassum species of Tamil Nadu coast. Aquatic Botany. 2021 Apr 1;171:103377. https://doi.org/10.1016/j.aquabot.2021.103377
[41] Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K. Crassulacean acid metabolism: plastic, fantastic. Journal of experimental botany. 2002 Apr 1;53(369):569-80. https://doi.org/10.1093/jexbot/53.369.569
[42] Sonke E, Verrydt M, Postenka CO, Pardhan S, Willie CJ, Mazzola CR, Hammers MD, Pluth MD, Lobb I, Power NE, Chambers AF. Inhibition of endogenous hydrogen sulfide production in clear-cell renal cell carcinoma cell lines and xenografts restricts their growth, survival and angiogenic potential. Nitric Oxide. 2015 Sep 15;49:26-39. https://doi.org/10.1016/j.niox.2015.06.001
[43] Gaurab, K. (2018). Citrate utilisation test: objective, principle, procedure and result. Microbiology Info. https://www.onlinebiologynotes.com/citrate-utilisation-test-objective-principle-procedure-and-result/
[44] Majid MF, Zaid HF, Kait CF, Jumbri K, Yuan LC, Rajasuriyan S. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. Journal of Molecular Liquids. 2020 May 15;306:112870. http://www.asmscience.org/ https://doi.org/10.1016/j.molliq.2020.112870
[45] Marasini BP, Baral P, Aryal P, Ghimire KR, Neupane S, Dahal N, Singh A, Ghimire L, Shrestha K. Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. BioMed research international. 2015;2015(1):265425. https://doi.org/10.1155/2015/265425
[46] Reiner K. Catalase test protocol. American society for microbiology. 2010 Nov 11;1(1):1-9. https://asm.org/getattachment/72a871fc-ba92-4128-a194-6f1bab5c3ab7/Catalase
[47] Vandeplassche E, Coenye T, Crabbé A. Developing selective media for quantification of multispecies biofilms following antibiotic treatment. PloS one. 2017 Nov 9;12(11):e0187540. https://doi.org/10.1371/journal.pone.0187540
[48] Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 2002 Apr 4;416(6880):556-60. https://doi.org/10.1038/nature731
[49] Moyes RB, Reynolds J, Breakwell DP. Differential staining of bacteria: gram stain. Current Protocols in Microbiology. 2009 Nov;15(1):A-3C. https://doi.org/10.1002/9780471729259.mca03cs15
[50] van Teeseling MC, de Pedro MA, Cava F. Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Frontiers in microbiology. 2017 Jul 10;8:1264. https://doi.org/10.3389/fmicb.2017.01264
[51] Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clinical microbiology reviews. 2013 Jul;26(3):547-603. https://doi.org/10.1128/CMR.00072-12
[52] Ra T, Zhao Y, Zheng M. Comparative study on the petroleum crude oil degradation potential of microbes from petroleum-contaminated soil and non-contaminated soil. International Journal of Environmental Science and Technology. 2019 Nov;16:7127-36. https://doi.org/10.1007/s13762-018-2114-z
[53] Rahman KS, Rahman TJ, Lakshmanaperumalsamy P, Marchant R, Banat IM. The potential of bacterial isolates for emulsification with a range of hydrocarbons. Acta biotechnologica. 2003 Dec;23(4):335-45. https://doi.org/10.1002/abio.200390043
[54] Vandana P, Singh D. Review on biosurfactant production and its application. International Journal of Current Microbiology and Applied Sciences. 2018;7(8):4228-41. https://doi.org/10.20546/ijcmas.2018.708.443
[55] Bento FM, de Oliveira Camargo FA, Okeke BC, Frankenberger Jr WT. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiological research. 2005 Jul 6;160(3):249-55.  https://doi.org/10.1016/j.micres.2004.08.005
[56] Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. Journal of bacteriology. 2001 Oct 15;183(20):6028-35. https://doi.org/10.1128/JB.183.20.6028-6035.2001
[57] Nassar HN, Abu Amr SS, El-Gendy NS. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environmental Science and Pollution Research. 2021 Feb;28:8102-16. https://doi.org/10.1007/s11356-020-11090-7
[58] Reddy P, Rao U. Isolation and Identification of Dibenzothiophene Desulfurizing Bacteria Occurring in Oil Contaminated Soils of Mechanical Workshops. Jordan Journal of Biological Sciences. All rights reserved-Volume. 2021;14(4):792. https://doi.org/10.54319/jjbs/140420
[59] AL-Joda BM, Jasim AH. Biochemical testing revision for identification several kinds of bacteria. Journal of University of Babylon for Pure and Applied Sciences. 2021 Jul 1;29(2):168-76. https://www.journalofbabylon.com/index.php/JUBPAS/article/view/3751/2816
[60] Rana K, Rana N, Singh B. Applications of sulfur oxidizing bacteria. InPhysiological and biotechnological aspects of extremophiles 2020 Jan 1 (pp. 131-136). Academic Press. https://doi.org/10.1016/B978-0-12-818322-9.00010-1
[61] Mohamad NA, Jusoh NA, Htike ZZ, Win SL. Bacteria identification from microscopic morphology: a survey. International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI). 2014 May;3(1):2319-1015. DOI: 10.5121/ijscai.2014.3201
[62] Young KD. Bacterial morphology: why have different shapes?. Current opinion in microbiology. 2007 Dec 1;10(6):596-600. https://doi.org/10.1016/j.mib.2007.09.009
[63] Kysela DT, Randich AM, Caccamo PD, Brun YV. Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLoS Biology. 2016 Oct 3;14(10):e1002565. https://doi.org/10.1371/journal.pbio.1002565
[64] Szaéjli E, Feheér T, Medzihradszky KF. Investigating the quantitative nature of MALDI-TOF MS. Molecular & Cellular Proteomics. 2008 Dec 1;7(12):2410-8. https://doi.org/10.1074/mcp.M800108-MCP200
[65] Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass spectrometry reviews. 2013 May;32(3):188-217. DOI: https://doi.org/10.1002/mas.21359
[66] Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews. 2012 Mar 1;36(2):380-407. DOI: https://doi.org/10.1111/j.1574-6976.2011.00298.x
[67] Wieser A, Schneider L, Jung J, Schubert S. MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Applied microbiology and biotechnology. 2012 Feb;93:965-74. DOI: https://doi.org/10.1007/s00253-011-3783-4
[68] Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in microbiology. 2015 Aug 5;6:791. https://doi.org/10.3389/fmicb.2015.00791
[69] Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clinical chemistry. 2015 Jan 1;61(1):100-11. https://doi.org/10.1373/clinchem.2014.221770
[70] Santos IC, Hildenbrand ZL, Schug KA. Applications of MALDI-TOF MS in environmental microbiology. Analyst. 2016;141(10):2827-37. https://doi.org/10.1039/c6an00131a
[71] Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. Enterococci in the environment. Microbiology and Molecular Biology Reviews. 2012 Dec;76(4):685-706. https://doi.org/10.1128/mmbr.00023-12
[72] Ferchichi M, Sebei K, Boukerb AM, Karray-Bouraoui N, Chevalier S, Feuilloley MG, Connil N, Zommiti M. Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve?. Microorganisms. 2021 Oct 26;9(11):2222. https://doi.org/10.3390/microorganisms9112222
[73] LaBauve AE, Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Current protocols in microbiology. 2012 May;25(1):6E-1.
[74] Mahdi O, Eklund B, Fisher N. Laboratory culture and maintenance of Stenotrophomonas maltophilia. Current Protocols in Microbiology. 2014 Feb;32(1):6F-1.
[75] Shahaby AF, Essam-El-din KM. Desulfurization of crude oil and oil products by local isolated bacterial strains. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2695-711. http://dx.doi.org/10.20546/ijcmas.2017.604.314
[76] Yu B, Xu P, Shi Q, Ma C. Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Applied and environmental microbiology. 2006 Jan;72(1):54-8. https://doi.org/10.1128%2FAEM.72.1.54-58.2006
[77] Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kino K, Kirimura K. Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. Journal of bioscience and bioengineering. 2005 Sep 1;100(3):266-73. DOI: https://doi.org/10.1263/jbb.100.266