[2] K. G. Osadetz, Z. Chen, and O. R. Base, “PS Current and Future Perspectives on Recovery Growth from the Western Canada Sedimentary Basin”.
[4] F. Saryazdi, H. Motahhari, F. F. Schoeggl, S. D. Taylor, and H. W. Yarranton, “Density of hydrocarbon mixtures and bitumen diluted with solvents and dissolved gases,” Energy & Fuels, vol. 27, no. 7, pp. 3666–3678, 2013.
https://doi.org/10.1021/ef400330j
[5] M. Kariznovi, “Phase behaviour study and physical properties measurement for Athabasca bitumen/solvent systems applicable for thermal and hybrid solvent recovery processes,” 2013, University of Calgary.
https://doi.org/10.2118/170163-MS
[9] E. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, and F. B. Cortés, “Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions,” Fuel, vol. 184, pp. 222–232, 2016.
https://doi.org/10.1016/j.fuel.2016.07.013
[10] S. S. Hassani, M. Daraee, and Z. Sobat, “Advanced development in upstream of petroleum industry using nanotechnology,” Chinese J. Chem. Eng., vol. 28, no. 6, pp. 1483–1491, 2020.
https://doi.org/10.1016/j.cjche.2020.02.030
[11] A. Khayal et al., “Recent Advances in the Applications of Nanotechnology and Nanomaterials in the Petroleum Industry: A Descriptive Review,” Part. Part. Syst. Charact., vol. 40, no. 8, p. 2300029, 2023. https://doi.org/10.1002/ppsc.202300029
[12] S. Banerjee, S. Dubey, R. K. Gautam, M. C. Chattopadhyaya, and Y. C. Sharma, “Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions,” Arab. J. Chem., vol. 12, no. 8, pp. 5339–5354, 2019.
https://doi.org/10.1016/j.arabjc.2016.12.016
[13] E. A. Taborda, C. A. Franco, M. A. Ruiz, V. Alvarado, and F. B. Cortes, “Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles,” Energy & Fuels, vol. 31, no. 2, pp. 1329–1338, 2017.
https://doi.org/10.1021/acs.energyfuels.6b02686
[20] F. Dai, Y. Yang, H. Wang, C. Li, Z. Li, and S. Zhang, “Pure carbon-number components to characterize the hydrocarbon mixture for kinetic modeling of hydrogenation process,” Fuel, vol. 202, pp. 287–295, 2017.
https://doi.org/10.1016/j.fuel.2017.03.010
[21] R. U. Meckenstock et al., “Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons,” J. Mol. Microbiol. Biotechnol., vol. 26, no. 1–3, pp. 92–118, 2016.
https://doi.org/10.1159/000441358
[22] T. C. Barros et al., “Hydrolysis of 1, 8-and 2, 3-naphthalic anhydrides and the mechanism of cyclization of 1, 8-naphthalic acid in aqueous solutions,” J. Chem. Soc. Perkin Trans. 2, no. 12, pp. 2342–2350, 2001.
https://doi.org/10.1039/B104148G
[25] P. V Ramírez-González and S. E. Quinones-Cisneros, “Rheological behavior of heavy and extra-heavy crude oils at high pressure,” Energy & Fuels, vol. 34, no. 2, pp. 1268–1275, 2020.
https://doi.org/10.1021/acs.energyfuels.9b02867
[26] A. Saniere, I. Hénaut, and J. F. Argillier, “Pipeline transportation of heavy oils, a strategic, economic and technological challenge,” Oil gas Sci. Technol., vol. 59, no. 5, pp. 455–466, 2004.
https://doi.org/10.2516/ogst:2004031
[28] J. C. L. Alves and R. J. Poppi, “Determining the presence of naphthenic and vegetable oils in paraffin-based lubricant oils using near infrared spectroscopy and support vector machines,” Anal. Methods, vol. 5, no. 22, pp. 6457–6464, 2013.
https://doi.org/10.1039/C3AY40325D
[29] J. F. Masson, G. M. Polomark, S. Bundalo-Perc, and P. Collins, “Melting and glass transitions in paraffinic and naphthenic oils,” Thermochim. Acta, vol. 440, no. 2, pp. 132–140, 2006.
https://doi.org/10.1016/j.tca.2005.11.001
[32] K. Klavers and L. Atkins, “Global Heavy Crude Oil Outlook to 2030,” in World Petroleum Congress, WPC, 2011, p. WPC-20. doi:
10.3390/ijms24010074
[34] R. F. Meyer, E. D. Attanasi, and P. A. Freeman, “Heavy oil and natural bitumen resources in geological basins of the world: Map showing klemme basin classification of sedimentary provinces reporting heavy oil or natural bitumen,” US Geol. Surv. Open-File Rep, vol. 2007, p. 1084, 2007.
https://doi.org/10.1016/j.petrol.2016.11.025
[35] A. H. Tali, S. K. Abdulridha, L. A. Khamees, J. I. Humadi, G. M. Farman, and S. J. Naser, “Permeability estimation of Yamama formation in a Southern Iraqi oil field, case study,” in AIP Conference Proceedings, AIP Publishing, 2023.
https://doi.org/10.1063/5.0163281
[37] M. L. Chacón-Patiño, S. M. Rowland, and R. P. Rodgers, “The compositional and structural continuum of petroleum from light distillates to asphaltenes: the boduszynski continuum theory as revealedby FT-ICR mass spectrometry,” in The Boduszynski Continuum: Contributions to the Understanding of the Molecular Composition of Petroleum, ACS Publications, 2018, pp. 113–171.DOI:
10.1021/bk-2018-1282.ch006
[38] A. M. McKenna, M. L. Chacón-Patiño, C. R. Weisbrod, G. T. Blakney, and R. P. Rodgers, “Molecular-level characterization of asphaltenes isolated from distillation cuts,” Energy & fuels, vol. 33, no. 3, pp. 2018–2029, 2019.
https://doi.org/10.1021/acs.energyfuels.8b04219
[40] N. Montoya Sánchez and A. de Klerk, “Autoxidation of aromatics,” Appl. Petrochemical Res., vol. 8, no. 2, pp. 55–78, 2018. https://doi.org/10.1007/s13203-018-0199-4.
https://doi.org/10.1021/cr500208k
[41] P. Buchwalter, J. Rosé, and P. Braunstein, “Multimetallic catalysis based on heterometallic complexes and clusters,” Chem. Rev., vol. 115, no. 1, pp. 28–126, 2015.
https://doi.org/10.1021/cr500208k
[43] A. Demirbas, H. Alidrisi, and M. A. Balubaid, “API gravity, sulfur content, and desulfurization of crude oil,” Pet. Sci. Technol., vol. 33, no. 1, pp. 93–101, 2015.
https://doi.org/10.1080/10916466.2014.950383
[45] W. H. Al-Dahhan, “Evaluation and Comparison of the Quality of Two Crude Oils at Dura Oil Refinery,” Al-Nahrain J. Sci., vol. 19, no. 1, pp. 76–85, 2016. doi:
10.22401/JNUS.19.1.09
[46] O. A. Sherwood, P. D. Travers, and M. P. Dolan, “Compound-specific stable isotope analysis of natural and produced hydrocarbon gases surrounding oil and gas operations,” Compr. Anal. Chem., vol. 61, pp. 347–372, 2013.
https://doi.org/10.1016/B978-0-444-62623-3.00015-0
[47] A. A. Mansur, M. Pannirselvam, K. A. Al-Hothaly, E. M. Adetutu, and A. S. Ball, “Recovery and characterization of oil from waste crude oil tank bottom sludge from Azzawiya oil refinery in Libya,” J. Adv. Chem. Eng, vol. 5, no. 1, p. 1000118, 2015. doi: 10.4172/2090-4568.1000118, 2015. doi:
https://www.walshmedicalmedia.com/open-access/recovery-and-characterization-of-oil-from-waste-crude-oil-tank-bottom-sludge-from-azzawiya-oil-refinery-in-libya-2090-4568-1000118.pdf
[48] E. Soliman, “Flow of heavy oils at low temperatures: Potential challenges and solutions,” in Processing of Heavy Crude Oils-Challenges and Opportunities, IntechOpen, 2019.
http://dx.doi.org/10.5772/intechopen.74912
[50] P. Luo, Asphaltene precipitation and its effects on a solvent-based heavy oil recovery process. Faculty of Graduate Studies and Research, University of Regina, 2009.
https://doi.org/10.1016/j.fuel.2019.116716
[51] Y. Zheng, M. S. Shadloo, H. Nasiri, A. Maleki, A. Karimipour, and I. Tlili, “Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations,” Renew. Energy, vol. 153, pp. 1296–1306, 2020.
https://doi.org/10.1016/j.renene.2020.02.087
[52] T. Huang, K. Peng, W. Song, C. Hu, and X. Guo, “Change characteristics of heavy oil composition and rock properties after steam flooding in heavy oil reservoirs,” Processes, vol. 11, no. 2, p. 315, 2023.
https://doi.org/10.3390/pr11020315
[53] L. Wang, J. Guo, C. Li, R. Xiong, X. Chen, and X. Zhang, “Advancements and future prospects in in-situ catalytic technology for heavy oil reservoirs in China: A review,” Fuel, vol. 374, p. 132376, 2024.
https://doi.org/10.1016/j.fuel.2024.132376
[56] G. A. Shafabakhsh, M. Sadeghnejad, B. Ahoor, and E. Taheri, “Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen,” Constr. Build. Mater., vol. 237, p. 117640, 2020.
https://doi.org/10.1016/j.conbuildmat.2019.117640
[57] K. Srinivasan and E. Roddick, “Magnetic viscosity, hysteresis reptation, and their relationship with adjacent track interference in advanced perpendicular recording media,” J. Appl. Phys., vol. 112, no. 4, 2012.
https://doi.org/10.1063/1.4747941
[58] S. Hoseini, F. Yousefi, S. M. Hosseini, and M. Pierantozzi, “Molecular thermodynamic modeling of surface tension: Extension to molten polymers,” J. Mol. Liq., vol. 364, p. 119934, 2022.
https://doi.org/10.1016/j.molliq.2022.119934
[60] P. Zhang, X. Chen, and C. Fan, “Research on a safety assessment method for leakage in a heavy oil gathering pipeline,” Energies, vol. 13, no. 6, p. 1340, 2020.
https://doi.org/10.3390/en13061340
[61] C. C. Ogugbue and S. N. Shah, “Laminar and turbulent friction factors for annular flow of drag-reducing polymer solutions in coiled-tubing operations,” SPE Drill. Complet., vol. 26, no. 04, pp. 506–518, 2011.
https://doi.org/10.2118/130579-PA
[62] A. A. Abdulrazak, M. Al-Khatieb, and H. A. Faris, “Problems of heavy oil transportation in pipelines and reduction of high viscosity,” Iraqi J. Chem. Pet. Eng., vol. 16, no. 3, pp. 1–9, 2015. doi:
10.31699/IJCPE.2015.3.1
[63] G. T. Chala, S. A. Sulaiman, and A. Japper-Jaafar, “Flow start-up and transportation of waxy crude oil in pipelines-A review,” J. Nonnewton. Fluid Mech., vol. 251, pp. 69–87, 2018.
https://doi.org/10.1016/j.jnnfm.2017.11.008
[64] F. Z. Wang, I. L. Animasaun, T. Muhammad, and S. S. Okoya, “Recent advancements in fluid dynamics: drag reduction, lift generation, computational fluid dynamics, turbulence modelling, and multiphase flow,” Arab. J. Sci. Eng., pp. 1–13, 2024.
https://doi.org/10.1007/s13369-024-08945-3
[67] A. A. Ganguli and A. B. Pandit, “Hydrodynamics of liquid-liquid flows in micro channels and its influence on transport properties: A review,” Energies, vol. 14, no. 19, p. 6066, 2021.
https://doi.org/10.3390/en14196066
[68] M. A. Asidin, E. Suali, T. Jusnukin, and F. A. Lahin, “Review on the applications and developments of drag reducing polymer in turbulent pipe flow,” Chinese J. Chem. Eng., vol. 27, no. 8, pp. 1921–1932, 2019.
https://doi.org/10.1016/j.cjche.2019.03.003
[69] F.-C. Li, Y. Kawaguchi, B. Yu, J.-J. Wei, and K. Hishida, “Experimental study of drag-reduction mechanism for a dilute surfactant solution flow,” Int. J. Heat Mass Transf., vol. 51, no. 3–4, pp. 835–843, 2008.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.048
[73] A. A. Abdul-Hadi and A. A. Khadom, “Studying the effect of some surfactants on drag reduction of crude oil flow,” Chinese J. Eng., vol. 2013, no. 1, p. 321908, 2013.
https://doi.org/10.1155/2013/321908
[74] X. Zhang, “Analytical and experimental study of turbulent flow drag reduction and degradation with polymer additives,” 2020, Memorial University of Newfoundland.
https://doi.org/10.48336/SQFN-7A32
[76] Y.-Z. Wang et al., “Performance analysis of reinforcement learning algorithms on intelligent closed-loop control on fluid flow and convective heat transfer,” Phys. Fluids, vol. 35, no. 7, 2023.
https://doi.org/10.1063/5.0158049
[77] N. T. R. Kumar, P. Bhramara, B. M. Addis, L. S. Sundar, M. K. Singh, and A. C. M. Sousa, “Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend,” Int. Commun. Heat Mass Transf., vol. 81, pp. 155–163, 2017.
https://doi.org/10.1016/j.icheatmasstransfer.2016.12.019
[78] A. M. Al-Ghamdi and H. A. Nasr-El-Din, “Effect of oilfield chemicals on the cloud point of nonionic surfactants,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 125, no. 1, pp. 5–18, 1997.
https://doi.org/10.1016/S0927-7757(96)03860-5
[79] F. H. Quina and W. L. Hinze, “Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach,” Ind. Eng. Chem. Res., vol. 38, no. 11, pp. 4150–4168, 1999.
https://doi.org/10.1021/ie980389n
[80] S. Mohammadi, F. Hormozi, and E. H. Rad, “Effects of surfactants on thermal performance and pressure drop in mini-channels-An experimental study,” J. Taiwan Inst. Chem. Eng., vol. 128, pp. 430–442, 2021.
https://doi.org/10.1016/j.jtice.2021.05.021
[81] R. Z. Mohammed, “The Effect of Surface Active Agents on Friction Reduction in Pipe Liquid Flow,” 2008, M. Sc. Thesis, Nahrain University-Chemical Engineering Department.
nahrainuniv.edu.iq
[82] F.-C. Li, Y. Kawaguchi, T. Segawa, and K. Hishida, “Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by particle image velocimetry,” Phys. Fluids, vol. 17, no. 7, 2005.
https://doi.org/10.1063/1.1941366
[83] X. Yang, G. Liu, L. Huo, H. Dong, and H. Zhong, “Alkane solubilization by surfactants: Aggregate view and size analysis based on cryo-TEM,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 642, p. 128589, 2022.
https://doi.org/10.1016/j.colsurfa.2022.128589
[84] M. Kamada, C. Pierlot, V. Molinier, J.-M. Aubry, and K. Aramaki, “Rheological properties of wormlike micellar gels formed by novel bio-based isosorbide surfactants,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 536, pp. 82–87, 2018.
https://doi.org/10.1016/j.colsurfa.2017.07.037
[85] B. C. Smith, Flow birefringence, nuclear magnetic resonance and corrosion measurements on drag-reducing cationic surfactant solutions for district heating and cooling systems. The Ohio State University, 1992.
https://doi.org/10.1007/BF00366584
[86] C. J. Lagares-Nieves, J. Santiago, and G. Araya, “Turbulence modeling in hypersonic turbulent boundary layers subject to convex wall curvature,” AIAA J., vol. 59, no. 12, pp. 4935–4954, 2021.
https://doi.org/10.2514/1.J060247
[87] F.-C. Li, B. Yu, J.-J. Wei, and Y. Kawaguchi, Turbulent drag reduction by surfactant additives. John Wiley & Sons, 2012. doi:
10.1007/978-3-540-75995-9_6
[89] Z. Lin et al., “Experimental studies on drag reduction and rheology of mixed cationic surfactants with different alkyl chain lengths,” Rheol. acta, vol. 39, pp. 354–359, 2000.
https://doi.org/10.1007/s003970000088
[90] S. M. Hamad-Allah and H. H. Hussein, “Drag Reduction by using Anionic Surfactants,” J. Eng., vol. 15, no. 1, pp. 3521–3537, 2009. doi:
10.31026/j.eng.2009.01.19
[91] G. Kume, M. Gallotti, and G. Nunes, “Review on anionic/cationic surfactant mixtures,” J. Surfactants Deterg., vol. 11, no. 1, pp. 1–11, 2008. doi:
10.1007/s11743-007-1047-1
[92] Y. Kobayashi, H. Gomyo, and N. Arai, “Molecular insight into the possible mechanism of drag reduction of surfactant aqueous solution in pipe flow,” Int. J. Mol. Sci., vol. 22, no. 14, p. 7573, 2021.
https://doi.org/10.3390/ijms22147573
[93] A. A. Arosemena, R. Andersson, H. I. Andersson, and J. Solsvik, “Effects of shear-thinning rheology on near-wall turbulent structures,” J. Fluid Mech., vol. 925, p. A37, 2021. doi:
https://doi.org/10.1017/jfm.2021.657
[95] Y. Irfan, “Study of viscosity and friction factor of nano drilling fluids along with torque and drag reduction,” 2016, University of Stavanger, Norway.
http://hdl.handle.net/11250/2409304
[97] M. Gudala, S. Banerjee, T. K. Naiya, A. Mandal, T. Subbaiah, and T. R. M. Rao, “Hydrodynamics and energy analysis of heavy crude oil transportation through horizontal pipelines using novel surfactant,” J. Pet. Sci. Eng., vol. 178, pp. 140–151, 2019.
https://doi.org/10.1016/j.petrol.2019.03.027
[98] J. Jing, J. Sun, J. Tan, M. Huang, Q. Liang, and T. Xue, “Investigation on flow patterns and pressure drops of highly viscous crude oil–water flows in a horizontal pipe,” Exp. Therm. Fluid Sci., vol. 72, pp. 88–96, 2016.
https://doi.org/10.1016/j.expthermflusci.2015.10.022
[99] S. Rushd, H. Ferroudji, H. Yousuf, T. W. Walker, A. Basu, and T. K. Sen, “Applications of drag reducers for the pipeline transportation of heavy crude oils: A critical review and future research directions,” Can. J. Chem. Eng., vol. 102, no. 1, pp. 438–458, 2024.
https://doi.org/10.1002/cjce.25023
[100] M. S. OKYERE, L. N. W. DAMOAH, E. NYANKSON, and D. S. KONADU, “Synergetic Effect of a Drag Reducer and Pipeline Internal Coating on Capacity Enhancement in Oil and Gas Pipelines: a Literature Review,” Eur. J. Mater. Sci. Eng., vol. 7, no. 2, pp. 75–93, 2022. doi:
https://ejmse.ro/articles/07_02_01_EJMSE-22-159.pdf
[101] D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of liquids: theory, estimation, experiment, and data. Springer Science & Business Media, 2007.
https://doi.org/10.1007/978-1-4020-5482-2
[102] J. Jing et al., “Drag Reduction Related to Boundary Layer Control in Transportation of Heavy Crude Oil by Pipeline: A Review,” Ind. Eng. Chem. Res., vol. 62, no. 37, pp. 14818–14834, 2023.
https://doi.org/10.1021/acs.iecr.3c02212
[103] F. Zhao, Y. Liu, N. Lu, T. Xu, G. Zhu, and K. Wang, “A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking,” Energy Reports, vol. 7, pp. 4249–4272, 2021.
https://doi.org/10.1016/j.egyr.2021.06.094
[104] S. W. Hasan, M. T. Ghannam, and N. Esmail, “Heavy crude oil viscosity reduction and rheology for pipeline transportation,” Fuel, vol. 89, no. 5, pp. 1095–1100, 2010.
https://doi.org/10.1016/j.fuel.2009.12.021
[108] P. M. Jackson and L. K. Smith, “Exploring the undulating plateau: the future of global oil supply,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 372, no. 2006, p. 20120491, 2014.
https://doi.org/10.1098/rsta.2012.0491
[112] R. Kandiyoti, Pipelines: flowing oil and crude politics. Bloomsbury Publishing, 2008. ISBN-10 : 184511390X ISBN-13 : 978-1845113902
[113] M. T. Nguyen et al., “Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives,” Fuel Process. Technol., vol. 213, p. 106681, 2021.
https://doi.org/10.1016/j.fuproc.2020.106681
[115] L. Chen, S. Ding, H. Liu, Y. Lu, Y. Li, and A. P. Roskilly, “Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine,” Appl. Energy, vol. 203, pp. 91–100, 2017.
https://doi.org/10.1016/j.apenergy.2017.06.036
[116]C. W. Angle, Y. Long, H. Hamza, and L. Lue, “Precipitation of asphaltenes from solvent-diluted heavy oil and thermodynamic properties of solvent-diluted heavy oil solutions,” Fuel, vol. 85, no. 4, pp. 492–506, 2006.
https://doi.org/10.1016/j.fuel.2005.08.009
[118] A. H. S. Dehaghani and M. H. Badizad, “Experimental study of Iranian heavy crude oil viscosity reduction by diluting with heptane, methanol, toluene, gas condensate and naphtha,” Petroleum, vol. 2, no. 4, pp. 415–424, 2016.
https://doi.org/10.1016/j.petlm.2016.08.012
[120] L. K. Alostad, D. C. Palacio Lozano, B. Gannon, R. P. Downham, H. E. Jones, and M. P. Barrow, “Investigating the Influence of n-Heptane versus n-Nonane upon the Extraction of Asphaltenes,” Energy & Fuels, vol. 36, no. 16, pp. 8663–8673, 2022.
https://doi.org/10.1021/acs.energyfuels.2c01168
[122] P. V Hemmingsen, A. Silset, A. Hannisdal, and J. Sjöblom, “Emulsions of heavy crude oils. I: Influence of viscosity, temperature, and dilution,” J. Dispers. Sci. Technol., vol. 26, no. 5, pp. 615–627, 2005.
https://doi.org/10.1081/DIS-200057671
[123] J. G. Speight, Heavy and extra-heavy oil upgrading technologies. Gulf Professional Publishing, 2013. ISBN: 9780124045705/ eBook ISBN: 9780124017474
[124] S. Afra, H. Nasr-El-Din, D. Socci, and Z. Cui, “A novel viscosity reduction plant-based diluent for heavy and extra-heavy oil,” in SPE Improved Oil Recovery Conference?, SPE, 2016, p. SPE-179523.
https://doi.org/10.2118/179523-MS
[125] J. Fink, Petroleum engineer’s guide to oil field chemicals and fluids. Gulf Professional Publishing, 2021. ISBN: 9780323854382/ eBook ISBN: 9780323858137
[126] J. Tremblay et al., “Chemical dispersants enhance the activity of oil-and gas condensate-degrading marine bacteria,” ISME J., vol. 11, no. 12, pp. 2793–2808, 2017.
https://doi.org/10.1038/ismej.2017.129
[127] P. A. Mello, J. S. F. Pereira, M. F. Mesko, J. S. Barin, and E. M. M. Flores, “Sample preparation methods for subsequent determination of metals and non-metals in crude oil—A review,” Anal. Chim. Acta, vol. 746, pp. 15–36, 2012.
https://doi.org/10.1016/j.aca.2012.08.009
[128] M. S. Greenwood, “Design of ultrasonic attenuation sensor with focused transmitter for density measurements of a slurry in a large steel pipeline,” J. Acoust. Soc. Am., vol. 138, no. 6, pp. 3846–3854, 2015.
https://doi.org/10.1121/1.4937767
[129] S. Chen, Q. Liu, Y. Bi, B. Yu, and J. Zhang, “Self‐Healing Effect of Various Capsule‐Core Materials on Asphalt Materials,” Adv. Civ. Eng., vol. 2022, no. 1, p. 5372501, 2022.
https://doi.org/10.1155/2022/5372501
[130] I. Bouhzam et al., “Life cycle assessment and yield to optimize extraction time and solvent: Comparing deep eutectic solvents vs conventional ones,” Sci. Total Environ., vol. 955, p. 177038, 2024.
https://doi.org/10.1016/j.scitotenv.2024.177038
[131] I. Hernández and F. Monaldi, “Weathering collapse: An assessment of the financial and operational situation of the venezuelan oil industry,” CID Work. Pap. Ser., 2016. doi:
10.38116/rtm23art11
[132] J.-F. Argillier, I. Henaut, P. Gateau, J.-P. Heraud, and P. Glenat, “Heavy-oil dilution,” in SPE International Thermal Operations and Heavy Oil Symposium, SPE, 2005, p. SPE-97763.
https://doi.org/10.2118/97763-MS
[133] Y. Wen and A. Kantzas, “Evaluation of heavy oil/bitumen-solvent mixture viscosity models,” J. Can. Pet. Technol., vol. 45, no. 04, 2006.
https://doi.org/10.2118/06-04-04
[134] P. Luo, C. Yang, and Y. Gu, “Enhanced solvent dissolution into in-situ upgraded heavy oil under different pressures,” Fluid Phase Equilib., vol. 252, no. 1–2, pp. 143–151, 2007.
https://doi.org/10.1016/j.fluid.2007.01.005
[135] P. A. Govind, S. Das, S. Srinivasan, and T. J. Wheeler, “Expanding solvent SAGD in heavy oil reservoirs,” in SPE International Thermal Operations and Heavy Oil Symposium, SPE, 2008, p. SPE-117571.
https://doi.org/10.2118/117571-MS
[136] S. Moghadam, M. Nobakht, and Y. Gu, “Theoretical and physical modeling of a solvent vapour extraction (VAPEX) process for heavy oil recovery,” J. Pet. Sci. Eng., vol. 65, no. 1–2, pp. 93–104, 2009.
https://doi.org/10.1016/j.petrol.2008.12.029
[137] J. Guo, H. Wang, C. Chen, Y. Chen, and X. Xie, “Synthesis and evaluation of an oil-soluble viscosity reducer for heavy oil,” Pet. Sci., vol. 7, pp. 536–540, 2010.
https://doi.org/10.1007/s12182-010-0105-x
[139] M. Kariznovi, H. Nourozieh, and J. Abedi, “Phase behavior and viscosity measurements of heavy crude oil with methane and ethane at high-temperature conditions,” in SPE Western Regional Meeting, SPE, 2012, p. SPE-152321.
https://doi.org/10.2118/152321-MS
[140] H. Motahhari, F. Schoeggl, M. Satyro, and H. Yarranton, “Viscosity prediction for solvent-diluted live bitumen and heavy oil at temperatures up to 175-deg-C,” J. Can. Pet. Technol., vol. 52, no. 05, pp. 376–390, 2013.
https://doi.org/10.2118/149405-PA
[141] H. Q. Hussein and S. A. Mohammad, “Viscosity reduction of sharqi baghdad heavy crude oil using different polar hydrocarbons, oxygenated solvents,” Iraqi J. Chem. Pet. Eng., vol. 15, no. 2, pp. 39–48, 2014. ISSN: 1997-4884
[142] A. M. Doust, M. Rahimi, and M. Feyzi, “Effects of solvent addition and ultrasound waves on viscosity reduction of residue fuel oil,” Chem. Eng. Process. Process Intensif., vol. 95, pp. 353–361, 2015.
https://doi.org/10.1016/j.cep.2015.07.014
[143] H. A. Faris, N. A. Sami, A. A. Abdulrazak, and J. S. Sangwai, “The performance of toluene and naphtha as viscosity and drag reducing solvents for the pipeline transportation of heavy crude oil,” Pet. Sci. Technol., vol. 33, no. 8, pp. 952–960, 2015.
https://doi.org/10.1080/10916466.2015.1030079
[144] F. Yang, X. Wang, H. Tan, and Z. Liu, “Improvement the viscosity of imidazolium-based ionic liquid using organic solvents for biofuels,” J. Mol. Liq., vol. 248, pp. 626–633, 2017.
https://doi.org/10.1016/j.molliq.2017.10.107
[145] S. Fakher, A. Imqam, and E. Wanas, “Investigating the viscosity reduction of ultra-heavy crude oil using hydrocarbon soluble low molecular weight compounds to improve oil production and transportation,” in SPE International Heavy Oil Conference and Exhibition, SPE, 2018, p. D021S006R003.
https://doi.org/10.2118/193677-MS
[146] J. Kang, A. A. Myint, S. Sim, J. Kim, W. B. Kong, and Y.-W. Lee, “Kinetics of the upgrading of heavy oil in supercritical methanol,” J. Supercrit. Fluids, vol. 133, pp. 133–138, 2018.
https://doi.org/10.1016/j.supflu.2017.10.005
[147] A. V Morozova and G. I. Volkova, “Effect of the petroleum resin structure on the properties of a petroleum-like system,” Pet. Chem., vol. 59, pp. 1153–1160, 2019.
https://doi.org/10.1134/S0965544119100086
[148] R. A. Azeez, F. K. Al-Zuhairia, and A. Al-Adilia, “A comparative investigation on viscosity reduction of heavy crude oil using organic solvents,” Int. J. Adv. Sci. Eng. Infor. Technol, vol. 10, pp. 1675–1681, 2020.
https://doi.org/10.18517/ijaseit.10.4.9022
[149] M. Sekar, P. Thaloor Ramesh, and E. Palanivelu, “Combined analysis of heavy crude oil viscosity and stress acting on the buried oil pipelines,” J. Pipeline Syst. Eng. Pract., vol. 12, no. 1, p. 4020059, 2021.
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000509
[150] F. K. Al-Zuhairi, R. A. Azeez, and M. K. Jassim, “Artificial neural network (ANN) for prediction of viscosity reduction of heavy crude oil using different organic solvents,” J. Eng., vol. 26, no. 6, pp. 35–49, 2020.
https://doi.org/10.31026/j.eng.2020.06.03
[152] A. Soleimani, M. A. Sobati, and S. Movahedirad, “An investigation on the viscosity reduction of Iranian heavy crude oil through dilution method,” Iran. J. Chem. Chem. Eng., vol. 40, no. 3, pp. 934–944, 2021.
https://doi.org/10.30492/ijcce.2020.38039
[153] E. M Saasaa, R. Kadhim Abbas, and S. Alsamaq, “Reducing the viscosity of missan heavy crude oil using combinations of low molecular weight hydrocarbon compounds,” Al-Qadisiyah J. Eng. Sci., vol. 15, no. 4, pp. 238–243, 2022.
https://doi.org/10.30772/qjes.v15i4.878
[154] S. Badoga, A. Alvarez-Majmutov, J. K. Rodriguez, and J. Chen, “Upgrading of Hydrothermal Liquefaction Biocrude from Forest Residues Using Solvents and Mild Hydrotreating for Use as Co-processing Feed in a Refinery,” Energy & Fuels, vol. 37, no. 17, pp. 13104–13114, 2023.
https://doi.org/10.1021/acs.energyfuels.2c03747
[155] A. Y. León, N.-A. Guerrero, S. Muñoz, M. Sandoval, R. Pérez, and D. Molina, “Naphtha co-injection with steam effects on Colombian heavy crude oils quality by FTIR and 1H NMR spectroscopy,” Fuel, vol. 366, p. 131369, 2024.
https://doi.org/10.1016/j.fuel.2024.131369
[156] J. Qajar, M. Razavifar, and M. Riazi, “A mechanistic study of the synergistic and counter effects of ultrasonic and solvent treatment on the rheology and asphaltene structure of heavy crude oil,” Chem. Eng. Process. Intensif., vol. 195, p. 109619, 2024.
https://doi.org/10.1016/j.cep.2023.109619
[157] M. Chai, H. Nourozieh, Z. Chen, M. Yang, and A. Hernandez, “Assessment of Protentional Underground Carbon Dioxide Storage in Post Heavy Oil Eor Phase Through Steam, Solvent, or Hybrid Injection: A Field Case Study,” in SPE Annual Technical Conference and Exhibition?, SPE, 2024, p. D021S030R005.
https://doi.org/10.2118/220723-MS
[158] A. A. Umar, I. B. M. Saaid, A. A. Sulaimon, and R. B. M. Pilus, “A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids,” J. Pet. Sci. Eng., vol. 165, pp. 673–690, 2018.
https://doi.org/10.1016/j.petrol.2018.03.014
[159] V. Hoshyargar and S. N. Ashrafizadeh, “Optimization of flow parameters of heavy crude oil-in-water emulsions through pipelines,” Ind. Eng. Chem. Res., vol. 52, no. 4, pp. 1600–1611, 2013.
https://doi.org/10.1021/ie302993m
[161] A. M. Sousa, H. A. Matos, and M. J. Pereira, “Properties of crude oil-in-water and water-in-crude oil emulsions: a critical review,” Ind. Eng. Chem. Res., vol. 61, no. 1, pp. 1–20, 2021.
https://doi.org/10.1021/acs.iecr.1c02744
[162] R. Zolfaghari, A. Fakhru’l-Razi, L. C. Abdullah, S. S. E. H. Elnashaie, and A. Pendashteh, “Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry,” Sep. Purif. Technol., vol. 170, pp. 377–407, 2016.
https://doi.org/10.1016/j.seppur.2016.06.026
[163] E. Alshaafi, “Ultrasonic Techniques for Characterization of Oil-Water Emulsion and Monitoring of Interface in Separation Vessels,” 2017, The University of Western Ontario (Canada).
https://ir.lib.uwo.ca/etd/4738
[164] A. Schuch, P. Deiters, J. Henne, K. Köhler, and H. P. Schuchmann, “Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water,” J. Colloid Interface Sci., vol. 402, pp. 157–164, 2013.
https://doi.org/10.1016/j.jcis.2013.03.066
[166] A. Belhaj, N. Singh, and H. Sarma, “Critical assessment of the hybrid impact of surfactants on modified salinity water flooding,” in SPE Canadian Energy Technology Conference, SPE, 2022, p. D022S007R001.
https://doi.org/10.2118/208974-MS
[167] A. Husain and M. A. Al-Harthi, “Chemical treatment of oilfield wastewater and the effect of temperature on treatment efficiency: A review,” J. Pet. Sci. Eng., vol. 220, p. 111089, 2023.
https://doi.org/10.1016/j.petrol.2022.111089
[168] D. M. Pirro, M. Webster, and E. Daschner, Lubrication fundamentals, revised and expanded. CRC Press, 2017. ISBN-10 : 149875290X
[170] A. Shah, R. Fishwick, J. Wood, G. Leeke, S. Rigby, and M. Greaves, “A review of novel techniques for heavy oil and bitumen extraction and upgrading,” Energy Environ. Sci., vol. 3, no. 6, pp. 700–714, 2010.
https://doi.org/10.1039/B918960B
[171] N. M. Aljamali and N. S. Salih, “Review on chemical separation of crude oil and analysis of its components,” J. Pet. Eng. Technol., vol. 11, no. 2, pp. 35-49p, 2021.
[172] L. D. Douglas et al., “A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil,” ACS Omega, vol. 7, no. 2, pp. 1547–1574, 2022, doi: 10.1021/acsomega.1c06399.
https://doi.org/10.1021/acsomega.1c06399
[173] A.-Y. Huc, “Heavy crude oils: from geology to upgrading: an overview,” 2011. ISBN 2-7108-0890-9; TRN: FR1100466023527
[174] S. Mokhatab, W. A. Poe, and J. Y. Mak, Handbook of natural gas transmission and processing: principles and practices. Gulf professional publishing, 2018. eBook ISBN: 9780128158784
[175] J. G. Speight, Heavy oil production processes. Gulf Professional Publishing, 2013. eBook ISBN: 9780124017481
[176] S. Alimohammadi, S. Zendehboudi, and L. James, “A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips,” Fuel, vol. 252, pp. 753–791, 2019.
https://doi.org/10.1016/j.fuel.2019.03.016
[177] G. Pocock and H. Joubert, “Effects of reduction of wastewater volumes on sewerage systems and wastewater treatment Plants,” Water Res. Comm. Rep., no. 2626/1, p. 18, 2018.
https://doi.org/10.1016/j.crm.2020.100262
[178] S. Nameer, T. Deltin, P.-E. Sundell, and M. Johansson, “Bio-based multifunctional fatty acid methyl esters as reactive diluents in coil coatings,” Prog. Org. coatings, vol. 136, p. 105277, 2019.
https://doi.org/10.1016/j.porgcoat.2019.105277
[179] L. Song, T. Liu, W. Fu, and Q. Lin, “Experimental study on spray characteristics of ethanol-aviation kerosene blended fuel with a high-pressure common rail injection system,” J. Energy Inst., vol. 91, no. 2, pp. 203–213, 2018.
https://doi.org/10.1016/j.joei.2016.12.004
[180] T. Ovaska, S. Niemi, K. Sirviö, O. Nilsson, K. Portin, and T. Asplund, “Effects of alternative marine diesel fuels on the exhaust particle size distributions of an off-road diesel engine,” Appl. Therm. Eng., vol. 150, pp. 1168–1176, 2019.
https://doi.org/10.1016/j.applthermaleng.2019.01.090
[181] G. N.-T. Nji, Characterization of heavy oils and bitumens, vol. 71, no. 08. 2010. doi:
10.1021/ef700488b
[183] Z. A. Abdulhussein, Z. T. Al-Sharify, and M. Alzuraiji, “Flow of crude oil in pipes and its environmental impact. A review,” in AIP Conference Proceedings, AIP Publishing, 2023.
https://doi.org/10.1063/5.0150151
[184] M.-X. Zhao, W.-X. Huang, and C.-X. Xu, “Drag reduction in turbulent flows along a cylinder by streamwise-travelling waves of circumferential wall velocity,” J. Fluid Mech., vol. 862, pp. 75–98, 2019.
https://doi.org/10.1017/jfm.2018.948
[185] M. R. Elkatory et al., “Mitigation and remediation technologies of waxy crude oils’ deposition within transportation pipelines: A review,” Polymers (Basel)., vol. 14, no. 16, p. 3231, 2022.
https://doi.org/10.3390/polym14163231
[186] J.-M. Guenet, Polymer-solvent molecular compounds. Elsevier, 2010. eBook ISBN: 9780080555034
[187] C. Marchioli and M. Campolo, “Drag reduction in turbulent flows by polymer and fiber additives,” KONA Powder Part. J., vol. 38, pp. 64–81, 2021.
https://doi.org/10.14356/kona.2021009
[188] H. Naseri et al., “Turbulence and cavitation suppression by quaternary ammonium salt additives,” Sci. Rep., vol. 8, no. 1, p. 7636, 2018. DOI:
10.1038/s41598-018-25980-x
[189] A. Bahadori, Oil and gas pipelines and piping systems: Design, construction, management, and inspection. Gulf Professional Publishing, 2016. eBook ISBN: 9780128038413
[190] F. Ansari, S. B. Shinde, K. G. Paso, J. Sjöblom, and L. Kumar, “Chemical Additives as Flow Improvers for Waxy Crude Oil and Model Oil: A Critical Review Analyzing Structure–Efficacy Relationships,” Energy & Fuels, vol. 36, no. 7, pp. 3372–3393, 2022.
https://doi.org/10.1021/acs.energyfuels.1c03747
[191] S. S. Baakeem, K. Hashlamoun, A. Hethnawi, Y. Mheibesh, and N. N. Nassar, “Drag Reduction by Polymer Additives: State-of-the-Art Advancements in Experimental and Numerical Approaches,” Ind. Eng. Chem. Res., vol. 63, no. 17, pp. 7485–7506, 2024.
https://doi.org/10.1021/acs.iecr.4c00202
[193] Z. Yao, Y. Zhang, Y. Zheng, C. Xing, and Y. Hu, “Enhance flows of waxy crude oil in offshore petroleum pipeline: A review,” J. Pet. Sci. Eng., vol. 208, p. 109530, 2022.
https://doi.org/10.1016/j.petrol.2021.109530
[195] E. D. Burger, W. R. Munk, and H. A. Wahl, “Flow increase in the Trans Alaska Pipeline through use of a polymeric drag-reducing additive,” J. Pet. Technol., vol. 34, no. 02, pp. 377–386, 1982.
https://doi.org/10.2118/9419-PA
[196] C. F. Li, V. K. Gupta, R. Sureshkumar, and B. Khomami, “Turbulent channel flow of dilute polymeric solutions: drag reduction scaling and an eddy viscosity model,” J. Nonnewton. Fluid Mech., vol. 139, no. 3, pp. 177–189, 2006.
https://doi.org/10.1016/j.jnnfm.2006.04.012
[198] N. A. of Sciences, D. on Earth, L. Studies, B. on C. Sciences, and C. on the E. of D. B. on the Environment, Spills of diluted bitumen from pipelines: A comparative study of environmental fate, effects, and response. National Academies Press, 2016.
https://doi.org/10.17226/21834
[199] E. Shi et al., “Research Status and Challenges of Mechanism, Characterization, Performance Evaluation, and Type of Nano-Pour Point Depressants in Waxy Crude Oil,” ACS omega, vol. 9, no. 33, pp. 35256–35274, 2024.
https://doi.org/10.1021/acsomega.4c05243
[200] R. Sharma, V. Mahto, and H. Vuthaluru, “Synthesis of PMMA/modified graphene oxide nanocomposite pour point depressant and its effect on the flow properties of Indian waxy crude oil,” Fuel, vol. 235, pp. 1245–1259, 2019.
https://doi.org/10.1016/j.fuel.2018.08.125
[201] M. I. Zougari and T. Sopkow, “Introduction to crude oil wax crystallization kinetics: process modeling,” Ind. Eng. Chem. Res., vol. 46, no. 4, pp. 1360–1368, 2007.
https://doi.org/10.1021/ie061002g
[202] S. A. Umoren, “Polymers as corrosion inhibitors for metals in different media-A review,” Open Corros. J., vol. 2, no. 1, 2009. DOI:
10.2174/1876503300902010175
[203] K. S. Pedersen and H. P. Rønningsen, “Influence of wax inhibitors on wax appearance temperature, pour point, and viscosity of waxy crude oils,” Energy & fuels, vol. 17, no. 2, pp. 321–328, 2003.
https://doi.org/10.1021/ef020142+
[204] G. H. Khaklari and P. Talukdar, “A review of various pour point depressants used for flow assurance in oil industries,” Interna tional J. Eng. Appl. Sci ences Technol., vol. 6, no. 1, pp. 2143–2455, 2021. doi:
10.33564/IJEAST.2021.v06i01.052
[205] S. K. Poornachary, V. D. Chia, M. K. Schreyer, P. S. Chow, and R. B. H. Tan, “Relating Alkyl Chain Length of Additives to Wax Crystallization Inhibition: Toward the Rational Design of Pour Point Depressants,” Cryst. Growth Des., vol. 22, no. 7, pp. 4031–4042, 2022.
https://doi.org/10.1021/acs.cgd.1c01310
[206] Z. Yang, A. Kumar, and R. L. Huhnke, “Review of recent developments to improve storage and transportation stability of bio-oil,” Renew. Sustain. Energy Rev., vol. 50, pp. 859–870, 2015.
https://doi.org/10.1016/j.rser.2015.05.025
[207] C. R. Reynolds, Synthesis, Characterisation and Antifungal Activity of Copper (II)-Functionalised Silicone Polymers and Silicone-Coated Magnetic Nanoparticles. National University of Ireland, Maynooth (Ireland), 2015. doi:
10.1080/00397911.2022.2127365
[208] L. A. Khamees et al., “Improvement of the activity of a new nano magnetic titanium catalyst by using alkaline for refinery wastewater oxidation treatment in a batch baffled reactor,” J. Water Process Eng., vol. 56, p. 104537, 2023.
https://doi.org/10.1016/j.jwpe.2023.104537
[209] J. A. Ali, A. M. Kalhury, A. N. Sabir, R. N. Ahmed, N. H. Ali, and A. D. Abdullah, “A state-of-the-art review of the application of nanotechnology in the oil and gas industry with a focus on drilling engineering,” J. Pet. Sci. Eng., vol. 191, p. 107118, 2020.
https://doi.org/10.1016/j.petrol.2020.107118
[211] Y.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, and H. Wang, “Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity,” Chem. Rev., vol. 115, no. 9, pp. 3433–3467, 2015.
https://doi.org/10.1021/cr500519c
[212] L. T. Montoya, “Investigation of the Interaction between Nanoparticles, Asphaltenes, and Silica Surfaces for Inhibition and Remediation of Formation Damage,” 2021.
http://hdl.handle.net/1880/113661
[213] U. Farooq, A. Patil, B. Panjwani, and G. Simonsen, “Review on application of nanotechnology for asphaltene adsorption, crude oil demulsification, and produced water treatment,” Energy & Fuels, vol. 35, no. 23, pp. 19191–19210, 2021.
https://doi.org/10.1021/acs.energyfuels.1c01990
[214] A. Sircar, K. Rayavarapu, N. Bist, K. Yadav, and S. Singh, “Applications of nanoparticles in enhanced oil recovery,” Pet. Res., vol. 7, no. 1, pp. 77–90, 2022.
https://doi.org/10.1016/j.ptlrs.2021.08.004
[215] B. Pinho, K. Zhang, R. L. Z. Hoye, and L. Torrente‐Murciano, “Importance of Monitoring the Synthesis of Light‐Interacting Nanoparticles–A Review on In Situ, Ex Situ, and Online Time‐Resolved Studies,” Adv. Opt. Mater., vol. 10, no. 14, p. 2200524, 2022.
https://doi.org/10.1002/adom.202200524
[216] Z. Mao, L. Cheng, D. Liu, T. Li, J. Zhao, and Q. Yang, “Nanomaterials and technology applications for hydraulic fracturing of unconventional oil and gas reservoirs: A state-of-the-art review of recent advances and perspectives,” ACS omega, vol. 7, no. 34, pp. 29543–29570, 2022.
https://doi.org/10.1021/acsomega.2c02897
[217] S. Davoodi, M. Al-Shargabi, D. A. Wood, V. S. Rukavishnikov, and K. M. Minaev, “Experimental and field applications of nanotechnology for enhanced oil recovery purposes: A review,” Fuel, vol. 324, p. 124669, 2022.
https://doi.org/10.1016/j.fuel.2022.124669
[218] A. A. Yaqoob, K. Umar, and M. N. M. Ibrahim, “Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review,” Appl. Nanosci., vol. 10, no. 5, pp. 1369–1378, 2020.
https://doi.org/10.1007/s13204-020-01318-w
[219] S. Shamaila, A. K. L. Sajjad, S. A. Farooqi, N. Jabeen, S. Majeed, and I. Farooq, “Advancements in nanoparticle fabrication by hazard free eco-friendly green routes,” Appl. Mater. Today, vol. 5, pp. 150–199, 2016.
https://doi.org/10.1016/j.apmt.2016.09.009
[221] B. S. Corrêa et al., “High-saturation magnetization in small nanoparticles of Fe 3 O 4 coated with natural oils,” J. Nanoparticle Res., vol. 22, pp. 1–15, 2020.
[222] S. Ko and C. Huh, “Use of nanoparticles for oil production applications,” J. Pet. Sci. Eng., vol. 172, pp. 97–114, 2019.
[223] M. R. Alam, M. Safiuddin, C. M. Collins, K. Hossain, and C. Bazan, “Innovative use of nanomaterials for improving performance of asphalt binder and asphaltic concrete: a state-of-the-art review,” Int. J. Pavement Eng., vol. 25, no. 1, p. 2370567, 2024.
[224] S. Ok, J. Samuel, D. Bahzad, M. A. Safa, M.-A. Hejazi, and L. Trabzon, “The Asphaltenes: State-of-the-Art Applications and Future Perspectives in Materials Science,” Energy & Fuels, 2024.
[225] O. E. Medina, J. Gallego, N. N. Nassar, S. A. Acevedo, F. B. Cortés, and C. A. Franco, “Thermo-oxidative decomposition behaviors of different sources of n-C7 Asphaltenes under high-pressure conditions,” Energy & Fuels, vol. 34, no. 7, pp. 8740–8758, 2020.
[226] M. N. Zafar, Q. Dar, F. Nawaz, M. N. Zafar, M. Iqbal, and M. F. Nazar, “Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles,” J. Mater. Res. Technol., vol. 8, no. 1, pp. 713–725, 2019.
[227] I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019.
[228] W. Song, X. Liu, T. Zheng, and J. Yang, “A review of recharge and clogging in sandstone aquifer,” Geothermics, vol. 87, p. 101857, 2020.
[229] L. A. Khamees, F. N. Abdulrazzaq, and J. I. Humadi, “Predicting Reservoir or Non-Reservoir Formations by Calculating Permeability and Porosity in an Iraqi Oil Field,” J. Chem. Pet. Eng., vol. 58, no. 1, pp. 115–129, 2024, doi:
10.22059/JCHPE.2024.367201.1459
[230] G. Kamarajan, D. B. Anburaj, V. Porkalai, A. Muthuvel, and G. Nedunchezhian, “Effect of temperature on optical, structural, morphological and antibacterial properties of biosynthesized ZnO nanoparticles,” J. Niger. Soc. Phys. Sci., p. 892, 2022.
https://doi.org/10.46481/jnsps.2022.892
[231] N. Yekeen, A. Al-Yaseri, A. K. Idris, and J. A. Khan, “Comparative effect of zirconium oxide (ZrO2) and silicon dioxide (SiO2) nanoparticles on the adsorption properties of surfactant-rock system: Equilibrium and thermodynamic analysis,” J. Pet. Sci. Eng., vol. 205, p. 108817, 2021.
https://doi.org/10.1016/j.petrol.2021.108817
[232] A. W. Azeez and H. Q. Hussein, “Investigating the effects of ultrasonic waves and nanosilica on the viscosity reduction of Sharqy Baghdad heavy crude oil,” Iraqi J. Chem. Pet. Eng., vol. 25, no. 4, pp. 61–71, 2024.
https://doi.org/10.31699/IJCPE.2024.4.6
[233] L. A. Khamees and F. N. Abdulrazzaq, “Journal of Chemical and Petroleum Engineering ( JChPE ) Evaluation Uncertainty in the Volume of Oil in Place in Mishrif Reservoir Calculating the volume of oil in place originally ( OOIP ) is one of the main objectives of Methodology The source data is kn,” vol. 58, no. 2, pp. 243–254, 2024, doi:
10.22059/jchpe.2024.373776.1491
[234] M. Cao et al., “Carbon dots nanofluid: Reducing injection pressure in unconventional reservoir by regulating oil/water/rock interfacial properties,” Fuel, vol. 352, p. 129046, 2023.
https://doi.org/10.1016/j.fuel.2023.129046
[235] H. Wang, X. Yang, Z. Fu, X. Zhao, Y. Li, and J. Li, “Rheology of nanosilica-compatibilized immiscible polymer blends: Formation of a ‘heterogeneous network’ facilitated by interfacially anchored hybrid nanosilica,” Macromolecules, vol. 50, no. 23, pp. 9494–9506, 2017.
https://doi.org/10.1021/acs.macromol.7b02143
[236] M. Al-Jabari, N. Nassar, and M. Husein, “Separation of asphaltenes from heavy oil model-solutions by adsorption on colloidal magnetite nanoparticles,” in proceeding of the International Congress of Chemistry & Environment, 2007.
https://doi.org/10.1016/j.fuel.2020.117763
[237] S. R. Stoyanov, S. Gusarov, S. M. Kuznicki, and A. Kovalenko, “Theoretical modeling of zeolite nanoparticle surface acidity for heavy oil upgrading,” J. Phys. Chem. C, vol. 112, no. 17, pp. 6794–6810, 2008.
https://doi.org/10.1021/jp075688h
[239] X. Kong and M. M. Ohadi, “Applications of micro and nano technologies in the oil and gas industry-an overview of the recent progress,” in Abu Dhabi international petroleum exhibition and conference, SPE, 2010, p. SPE-138241.
https://doi.org/10.2118/138241-MS
[240] N. N. Nassar, A. Hassan, and P. Pereira-Almao, “Metal oxide nanoparticles for asphaltene adsorption and oxidation,” Energy & Fuels, vol. 25, no. 3, pp. 1017–1023, 2011.
https://doi.org/10.1021/ef101230g
[241] B. J. A. Tarboush and M. M. Husein, “Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles,” J. Colloid Interface Sci., vol. 378, no. 1, pp. 64–69, 2012.
https://doi.org/10.1016/j.jcis.2012.04.016
[242] N. Hosseinpour, A. A. Khodadadi, A. Bahramian, and Y. Mortazavi, “Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology,” Langmuir, vol. 29, no. 46, pp. 14135–14146, 2013.
ttps://doi.org/10.1021/la402979h
[243] K. Li, B. Hou, L. Wang, and Y. Cui, “Application of carbon nanocatalysts in upgrading heavy crude oil assisted with microwave heating,” Nano Lett., vol. 14, no. 6, pp. 3002–3008, 2014.
https://doi.org/10.1021/nl500484d
[244] R. Hashemi, N. N. Nassar, and P. P. Almao, “Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges,” Appl. Energy, vol. 133, pp. 374–387, 2014.
https://doi.org/10.1016/j.apenergy.2014.07.069
[245] M. R. Rad, A. Rashidi, L. Vafajoo, and M. Rashtchi, “Preparation of Co–Mo supported multi-wall carbon nanotube for hydrocracking of extra heavy oil,” J. Ind. Eng. Chem., vol. 20, no. 6, pp. 4298–4303, 2014.
https://doi.org/10.1016/j.jiec.2014.01.036
[246] O. A. Alomair, K. M. Matar, and Y. H. Alsaeed, “Experimental study of enhanced-heavy-oil recovery in Berea sandstone cores by use of nanofluids applications,” SPE Reserv. Eval. Eng., vol. 18, no. 03, pp. 387–399, 2015.
https://doi.org/10.2118/171539-PA
[247] A. R. Brown, A. Hart, V. S. Coker, J. R. Lloyd, and J. Wood, “Upgrading of heavy oil by dispersed biogenic magnetite catalysts,” Fuel, vol. 185, pp. 442–448, 2016.
https://doi.org/10.1016/j.fuel.2016.08.015
[248] L. Qi, C. Song, T. Wang, Q. Li, G. J. Hirasaki, and R. Verduzco, “Polymer-coated nanoparticles for reversible emulsification and recovery of heavy oil,” Langmuir, vol. 34, no. 22, pp. 6522–6528, 2018.
https://doi.org/10.1021/acs.langmuir.8b00655
[249] J. Taheri-Shakib, A. Shekarifard, and H. Naderi, “Heavy crude oil upgrading using nanoparticles by applying electromagnetic technique,” Fuel, vol. 232, pp. 704–711, 2018.
https://doi.org/10.1016/j.fuel.2018.06.023
[250] D. Lin et al., “Insights into the synergy between recyclable magnetic Fe3O4 and zeolite for catalytic aquathermolysis of heavy crude oil,” Appl. Surf. Sci., vol. 456, pp. 140–146, 2018.
https://doi.org/10.1016/j.apsusc.2018.06.069
[251] L. Cardona, D. Arias-Madrid, F. B. Cortés, S. H. Lopera, and C. A. Franco, “Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO-Functionalized SiO2 nanoparticulated catalysts,” Catalysts, vol. 8, no. 4, p. 132, 2018.
https://doi.org/10.3390/catal8040132
[252] S. Tajik, A. Shahrabadi, and A. Rashidi, “Silica-graphene nanohybrid supported MoS2 nanocatalyst for hydrogenation reaction and upgrading heavy oil,” J. Pet. Sci. Eng., vol. 177, pp. 822–828, 2019.
https://doi.org/10.1016/j.petrol.2019.02.085
[253] R. Anto, S. Deshmukh, S. Sanyal, and U. K. Bhui, “Nanoparticles as flow improver of petroleum crudes: Study on temperature-dependent steady-state and dynamic rheological behavior of crude oils,” Fuel, vol. 275, p. 117873, 2020.
https://doi.org/10.1016/j.fuel.2020.117873
[254] L. Cardona, O. E. Medina, S. Céspedes, S. H. Lopera, F. B. Cortés, and C. A. Franco, “Effect of steam quality on extra-heavy crude oil upgrading and oil recovery assisted with PdO and NiO-functionalized Al2O3 nanoparticles,” Processes, vol. 9, no. 6, p. 1009, 2021.
https://doi.org/10.1016/j.fuel.2020.117873
[255] Z. Gu, T. Lu, Z. Li, and Z. Xu, “Experimental investigation on the SiO2 nanoparticle foam system characteristics and its advantages in the heavy oil reservoir development,” J. Pet. Sci. Eng., vol. 214, p. 110438, 2022.
https://doi.org/10.1016/j.petrol.2022.110438
[257] E. M. Majeed and T. M. Naife, “Enhancement viscosity reduction and API of Iraqi heavy crude oil by nanoparticles,” in AIP Conference Proceedings, AIP Publishing, 2023.
https://doi.org/10.1063/5.0107261
[258] J. Zhang, H. Huang, M. Zhang, and W. Wang, “Experimental investigation of nanofluid enhanced oil recovery by spontaneous imbibition,” RSC Adv., vol. 13, no. 24, pp. 16165–16174, 2023. doi:
10.1039/D2RA06762E
[259] V. E. Katnov et al., “Influence of Sodium Metal Nanoparticles on the Efficiency of Heavy Oil Aquathermolysis,” Catalysts, vol. 13, no. 3, p. 609, 2023.
https://doi.org/10.3390/catal13030609
[260] Z. Wu et al., “Current status and future trends of in situ catalytic upgrading of extra heavy oil,” Energies, vol. 16, no. 12, p. 4610, 2023.
https://doi.org/10.3390/en16124610
[261] M. T. Naser, A. A. Alwasiti, R. S. Almukhtar, and M. J. Shibeeb, “Experimental Investigation of the Nanoparticle Effect on the Pipeline Flow Behavior of Emulsions,” Pet. Chem., pp. 1–12, 2024.
https://doi.org/10.1134/S0965544124010122
[262] S. Z. Heris, H. Bagheri, S. B. Mousavi, and S. Hosseini Nami, “Optimizing nanofluid additives for enhanced thermophysical properties in anionic crude oil for EOR applications,” Can. J. Chem. Eng., 2024.
https://doi.org/10.1002/cjce.25208
[263] A. Khajeh Kulaki, S. M. Hosseini-Nasab, and F. Hormozi, “Low-salinity water flooding by a novel hybrid of nano γ-Al2O3/SiO2 modified with a green surfactant for enhanced oil recovery,” Sci. Rep., vol. 14, no. 1, p. 14033, 2024. https://doi.org/10.1038/s41598-024-64171-9
[264] A. K. Manshad et al., “Performance evaluation of the green surfactant-treated nanofluid in enhanced oil recovery: Dill-hop extracts and SiO2/bentonite nanocomposites,” Energy & Fuels, vol. 38, no. 3, pp. 1799–1812, 2024.
https://doi.org/10.1021/acs.energyfuels.3c04335
[265] R. H. Castro et al., “Experimental Investigation of the Viscosity and Stability of Scleroglucan-Based Nanofluids for Enhanced Oil Recovery,” Nanomaterials, vol. 14, no. 2, p. 156, 2024.
https://doi.org/10.3390/nano14020156
[266] S. J. Alhamd, F. L. Rashid, M. A. Al-Obaidi, and A. K. Aldami, “Unveiling crude oil viscosity and rheological Properties: An experimental comparison of Nano silica and Nano Molybdenum disulfide in Bazargan Oilfield,” Fuel, vol. 381, p. 133698, 2025.
https://doi.org/10.1016/j.fuel.2024.133698
[267] D. Hebert et al., “Characterization of nanoparticles used as precipitant agents for in situ upgrading of heavy crude oils via single particle inductively coupled plasma mass spectrometry (spICP-MS),” Fuel, vol. 381, p. 133452, 2025.
https://doi.org/10.1016/j.fuel.2024.133452
[268] Sheikh, M.S. and Dar, A.A., 2009. Interaction of a cationic gemini surfactant with conventional surfactants in the mixed micelle and monolayer formation in aqueous medium. Journal of colloid and interface science, 333(2), pp.605-612.
https://doi.org/10.1016/j.jcis.2009.01.041
[271] M. M. Rieger, “Surfactants,” in Pharmaceutical Dosage Forms, CRC Press, 2020, pp. 211–286. eBook ISBN9781003067368
[272] J. H. Clint, Surfactant aggregation. Springer Science & Business Media, 2012. ISBN 9401122725, 9789401122726
[273] N. A. Ivanova and V. M. Starov, “Wetting of low free energy surfaces by aqueous surfactant solutions,” Curr. Opin. Colloid Interface Sci., vol. 16, no. 4, pp. 285–291, 2011.
https://doi.org/10.1016/j.cocis.2011.06.008
[274] A. R. Kale, S. Kakade, and A. Bhosale, “A Review on: Solubility Enhancement Techniques.,” J. Curr. Pharma Res., vol. 10, no. 2, pp. 3630–3647, 2020. ISSN-2230-7842
[275] Savjani, K.T., Gajjar, A.K. and Savjani, J.K., 2012. Drug solubility: importance and enhancement techniques. International Scholarly Research Notices, 2012(1), p.195727.
https://doi.org/10.5402/2012/195727
[277] T. A. Salih, S. H. Sahi, and A. N. G. AL-Dujaili, “Using different surfactants to increase oil recovery of Rumaila field (Experimental Work),” Iraqi J. Chem. Pet. Eng., vol. 17, no. 3, pp. 11–31, 2016. doi:
10.31699/IJCPE.2016.3.2
[279] A. M. Atta, “Surface and thermodynamic parameters of polymeric surfactants from recycled poly (ethylene terephthalate),” Polym. Int., vol. 56, no. 8, pp. 984–995, 2007.
https://doi.org/10.1002/pi.2232
[280] F. O. Oshomogho, “Comparative Studies on the Degradability of Anthracene and Pyrene by Synthetic and Bio-Surfactants,” 2015, University of Benin, Benin. doi:
10.13140/RG.2.1.2620.1204
[281] S. Chowdhury, S. Shrivastava, A. Kakati, and J. S. Sangwai, “Comprehensive review on the role of surfactants in the chemical enhanced oil recovery process,” Ind. Eng. Chem. Res., vol. 61, no. 1, pp. 21–64, 2022.
https://doi.org/10.1021/acs.iecr.1c03301
[282] Q. Liang et al., “Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application,” Chem. Eng. J., vol. 372, pp. 429–451, 2019.
https://doi.org/10.1021/acs.iecr.1c03301
[283] J. Lee, Z.-L. Zhou, G. Alas, and S. H. Behrens, “Mechanisms of particle charging by surfactants in nonpolar dispersions,” Langmuir, vol. 31, no. 44, pp. 11989–11999, 2015.
https://doi.org/10.1021/acs.langmuir.5b02875
[284] E. D. Goddard, “Polymer-surfactant interaction: Part II. Polymer and surfactant of opposite charge,” in Interactions of surfactants with polymers and proteins, CRC Press, 2018, pp. 171–202. eBook ISBN9781351073783
[285] Subramaniyam, S.S., Rao, S., Rao, P., Sali, M., Krishna, P.G. and Asha, K., 2025. An overview of corrosion and its control by the surfactants: a mini-review. Canadian Metallurgical Quarterly, pp.1-31.
https://doi.org/10.1080/00084433.2025.2484036
[288] A. D. James, “Cationic surfactants,” in Lipid Technologies and Applications, Routledge, 2018, pp. 609–631. eBook ISBN9780203748848
[289] G. Wypych, Handbook of Surface Improvement and Modification. Elsevier, 2023. eBook ISBN: 9781927885345
[291] D. Wieczorek and D. Kwaśniewska, “Novel trends in technology of surfactants,” Chem. Technol. Process. Staszak, K., Wieszczycka, K., Tylkowski, B., Eds, pp. 23–250, 2020. doi:
https://doi.org/10.1515/9783110656367-008?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
[292] A. Ethier, P. Bansal, J. Baxter, N. Langley, N. Richardson, and A. M. Patel, “The role of excipients in the microstructure of Topical semisolid drug products,” Role Microstruct. Top. Drug Prod. Dev., pp. 155–193, 2019.
https://doi.org/10.1007/978-3-030-17355-5_5
[296] Y.-H. Chiao et al., “Zwitterion co-polymer pei-sbma nanofiltration membrane modified by fast second interfacial polymerization,” Polymers (Basel)., vol. 12, no. 2, p. 269, 2020.
https://doi.org/10.3390/polym12020269
[297] A. Mero, A. Mezzetta, J. Nowicki, J. Łuczak, and L. Guazzelli, “Betaine and l-carnitine ester bromides: Synthesis and comparative study of their thermal behaviour and surface activity,” J. Mol. Liq., vol. 334, p. 115988, 2021.
https://doi.org/10.1016/j.molliq.2021.115988
[298] R. P. Gawade, S. L. Chinke, and P. S. Alegaonkar, “Polymers in cosmetics,” in Polymer science and innovative applications, Elsevier, 2020, pp. 545–565. doi:
10.1016/B978-0-12-816808-0.00017-2
[299] Y. Shah and S. Yarusevych, “Streamwise evolution of drag reduced turbulent boundary layer with polymer solutions,” Phys. Fluids, vol. 32, no. 6, 2020.
https://doi.org/10.1063/5.0009371
[300] A. Khomyakov and I. Elyukhina, “Complete dynamic similarity for sea trials and towing tank experiments by means of polymer drag reduction,” Ocean Eng., vol. 178, pp. 31–37, 2019.
https://doi.org/10.1016/j.oceaneng.2019.02.061
[303] B. A. A. Ramamonjisoa, A. Altun, and O. N. Şara, “Energy correlation of heat transfer for drag reduction surfactant solution in a double pipe heat exchanger,” Heat Mass Transf., vol. 60, no. 4, pp. 651–663, 2024.
https://doi.org/10.1007/s00231-024-03461-4
[304] N. M. Sohaimi, N. M. Saleh, M. M. Ariffin, S. Y. Beh, and R. Ahmad, “An environmentally friendly method for extraction of parabens in various samples using low viscosity and low cloud point temperature surfactant,” Malaysian J. Anal. Sci., vol. 22, no. 3, pp. 365–374, 2018. doi:
10.1080/01496395.2016.1207666
[305] A. Kannan, I. C. Shieh, D. L. Leiske, and G. G. Fuller, “Monoclonal antibody interfaces: dilatation mechanics and bubble coalescence,” Langmuir, vol. 34, no. 2, pp. 630–638, 2018.
https://doi.org/10.1021/acs.langmuir.7b03790
[306] W. Lin and J. Klein, “Direct measurement of surface forces: recent advances and insights,” Appl. Phys. Rev., vol. 8, no. 3, 2021.
https://doi.org/10.1063/5.0059893
[307] W. Kang et al., “Rheological behavior and mechanism of pH-responsive wormlike micelle variations induced by isomers of phthalic acid,” Soft Matter, vol. 14, no. 22, pp. 4445–4452, 2018. doi:
10.1039/c8sm00467f
[308] N. Kumar, S. Ali, A. Kumar, and A. Mandal, “Design and formulation of surfactant stabilized O/W emulsion for application in enhanced oil recovery: effect of pH, salinity and temperature,” Oil Gas Sci. Technol. d’IFP Energies Nouv., vol. 75, p. 72, 2020.
https://doi.org/10.2516/ogst/2020066
[309] W. Ge, Studies on the nanostructure, rheology and drag reduction characteristics of drag reducing cationic surfactant solutions. The Ohio State University, 2008.
https://doi.org/10.1155/2011/4787
[310] S.-H. Cho, C.-S. Tae, and M. Zaheeruddin, “Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction,” Energy Convers. Manag., vol. 48, no. 3, pp. 913–918, 2007.
https://doi.org/10.1016/j.enconman.2006.08.021
[311] Y. Shang et al., “Saturated C22-tailed cationic surfactant in concentrated brine: Structural evolution of wormlike micelles and rheological properties,” J. Mol. Liq., vol. 378, p. 121561, 2023.
https://doi.org/10.1016/j.molliq.2023.121561
[312] H. A. Faris and A. A. Abdulrazak, “Improvement Heavy Oil Transportation IN Pipelines (laboratory study),” J. Pet. Res. Stud., vol. 7, no. 1, pp. 200–209, 2017.
https://doi.org/10.52716/jprs.v7i1.176
[313] P. O. Ayegba, L. C. Edomwonyi‐Otu, N. Yusuf, and A. Abubakar, “A review of drag reduction by additives in curved pipes for single‐phase liquid and two‐phase flows,” Eng. Reports, vol. 3, no. 3, p. e12294, 2021.
https://doi.org/10.1002/eng2.12294
[314] J. L. Zakin, Y. Zhang, and W. Ge, “Drag reduction by surfactant giant micelles,” Giant Micelles, pp. 473–492, 2007. eBook ISBN9780429124969
[316] H. R. Karami and D. Mowla, “Investigation of the effects of various parameters on pressure drop reduction in crude oil pipelines by drag reducing agents,” J. Nonnewton. Fluid Mech., vol. 177, pp. 37–45, 2012.
https://doi.org/10.1016/j.jnnfm.2012.04.001
[318] A. AL-Dogail, R. Gajbhiye, and S. Patil, “A Review of Drag-Reducing Agents (DRAs) in Petroleum Industry,” Arab. J. Sci. Eng., vol. 48, no. 7, pp. 8287–8305, 2023.
https://doi.org/10.1007/s13369-022-07184-8
[319] M. Basha, S. M. Shaahid, and L. M. Alhems, “Effect of Viscosity on Pressure Drop of Oil-Water Two Phase Flow in 6” Horizontal and Inclined Stainless Steel Annulus Pipe,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 69, no. 2, pp. 156–167, 2020.
https://doi.org/10.1016/j.petlm.2023.09.005
[320] E. Hedayati, M. Mohammadzadeh-Shirazi, A. Abbasi, and M. R. Malayeri, “Experimental investigation of the acid-oil emulsion stability influenced by operational conditions and oil properties,” J. Mol. Liq., vol. 390, p. 123132, 2023.
https://doi.org/10.1016/j.molliq.2023.123132
[321] P. Koreh, M. Lashkarbolooki, M. Peyravi, and M. Jahanshahi, “Interfacial performance of cationic, anionic and non-ionic surfactants; effect of different characteristics of crude oil,” J. Pet. Sci. Eng., vol. 218, p. 110960, 2022.
https://doi.org/10.1016/j.petrol.2022.110960
[322] M. Barari, M. Lashkarbolooki, R. Abedini, and A. Z. Hezave, “Effects of conventional and ionic liquid-based surfactants and sodium tetraborate on interfacial tension of acidic crude oil,” Sci. Rep., vol. 14, no. 1, p. 2618, 2024. doi:
10.1038/s41598-024-52178-1
[323] Y. Al-Roomi, R. George, A. Elgibaly, and A. Elkamel, “Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils,” J. Pet. Sci. Eng., vol. 42, no. 2–4, pp. 235–243, 2004.
https://doi.org/10.1016/j.petrol.2003.12.014
[324] T. Babadagli, “Analysis of oil recovery by spontaneous imbibition of surfactant solution,” Oil gas Sci. Technol., vol. 60, no. 4, pp. 697–710, 2005.
https://doi.org/10.2516/ogst:2005049
[325] J. R. Hou, Z. C. Liu, M. Z. Dong, X. A. Yue, and J. Z. Yang, “Effect of viscosity of alkaline/surfactant/polymer (ASP) solution on enhanced oil recovery in heterogeneous reservoirs,” J. Can. Pet. Technol., vol. 45, no. 11, 2006.
https://doi.org/10.2118/06-11-03
[326] G. A. R. Rassoul and A. A. A. Hadi, “Drag reduction of crude oil flow in pipelines using Sodium Dodecyl Benzene Sulfonate Surfactant,” Iraqi J. Chem. Pet. Eng., vol. 8, no. 2, pp. 29–34, 2007.
https://doi.org/10.31699/IJCPE.2007.2.5
[328] J. Bryan and A. Kantzas, “Potential for alkali-surfactant flooding in heavy oil reservoirs through oil-in-water emulsification,” J. Can. Pet. Technol., vol. 48, no. 02, pp. 37–46, 2009.
https://doi.org/10.2118/09-02-37
[329] V. S. Millioli, E. L. C. Servulo, L. G. S. Sobral, and D. D. De Carvalho, “Bioremediation of crude oil-bearing soil: evaluating the effect of rhamnolipid addition to soil toxicity and to crude oil biodegradation efficiency,” Glob. NEST J., vol. 11, no. 2, pp. 181–188, 2009.
https://doi.org/10.1007/s11270-012-1190-9
[330] J. Wang and M. Dong, “Simulation of O/W emulsion flow in alkaline/surfactant flood for heavy oil recovery,” J. Can. Pet. Technol., vol. 49, no. 06, pp. 46–52, 2010.
https://doi.org/10.2118/138969-PA
[331] A. Perfumo, T. Smyth, R. Marchant, and I. Banat, “Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates.,” in Handbook of hydrocarbon and lipid microbiology, Springer, 2010, pp. 1501–1512.
https://doi.org/10.1007/978-3-540-77587-4_103
[332] P. Srivastava and L. Castro, “Successful field application of surfactant additives to enhance thermal recovery of heavy oil,” in SPE middle east oil and gas show and conference, SPE, 2011, p. SPE-140180.
https://doi.org/10.2118/140180-MS
[333] G. J. Hirasaki, C. A. Miller, and M. Puerto, “Recent advances in surfactant EOR,” SPE J., vol. 16, no. 04, pp. 889–907, 2011.
https://doi.org/10.2118/115386-PA
[334] S. Trabelsi, A. Hutin, J.-F. Argillier, C. Dalmazzone, B. Bazin, and D. Langevin, “Effect of added surfactants on the dynamic interfacial tension behaviour of alkaline/diluted heavy crude oil system,” Oil Gas Sci. Technol. d’IFP Energies Nouv., vol. 67, no. 6, pp. 963–968, 2012.
https://doi.org/10.2516/ogst/2012033
[335] H. Pei, G. Zhang, J. Ge, M. Tang, and Y. Zheng, “Comparative effectiveness of alkaline flooding and alkaline–surfactant flooding for improved heavy-oil recovery,” Energy & Fuels, vol. 26, no. 5, pp. 2911–2919, 2012.
https://doi.org/10.1021/ef300206u
[336] L. Chen, G. Zhang, J. Ge, P. Jiang, J. Tang, and Y. Liu, “Research of the heavy oil displacement mechanism by using alkaline/surfactant flooding system,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 434, pp. 63–71, 2013.
https://doi.org/10.1016/j.colsurfa.2013.05.035
[337] M. M. Salehi, E. Sahraei, and S. Nejad, “Experimental study of new improved oil recovery from heavy and semi-heavy oil reservoirs by implementing immiscible heated surfactant alternating gas injection,” J. Pet. Gas Eng., vol. 4, no. 6, pp. 154–159, 2013.
https://doi.org/10.1007/s13202-025-01999-5
[338] R. Kumar, S. Banerjee, N. Kumar, A. Mandal, and T. Kumar Naiya, “Comparative studies on synthetic and naturally extracted surfactant for improving rheology of heavy crude oil,” Pet. Sci. Technol., vol. 33, no. 10, pp. 1101–1109, 2015.
https://doi.org/10.1080/10916466.2015.1044612
[339] K. M. Ko, B. H. Chon, S. B. Jang, and H. Y. Jang, “Surfactant flooding characteristics of dodecyl alkyl sulfate for enhanced oil recovery,” J. Ind. Eng. Chem., vol. 20, no. 1, pp. 228–233, 2014.
https://doi.org/10.1016/j.jiec.2013.03.043
[340] T. K. Naiya, S. Banerjee, R. Kumar, and A. Mandal, “Heavy crude oil rheology improvement using naturally extracted surfactant,” in SPE Oil and Gas India Conference and Exhibition?, SPE, 2015, p. SPE-178133.
https://doi.org/10.2118/178133-MS
[341] S. Banerjee, R. Kumar, A. Mandal, and T. K. Naiya, “Use of a novel natural surfactant for improving flowability of Indian heavy crude oil,” Pet. Sci. Technol., vol. 33, no. 7, pp. 819–826, 2015.
https://doi.org/10.1080/10916466.2015.1014961
[342] Z. Wang, X. Yu, J. Li, J. Wang, and L. Zhang, “The use of biobased surfactant obtained by enzymatic syntheses for wax deposition inhibition and drag reduction in crude oil pipelines,” Catalysts, vol. 6, no. 5, p. 61, 2016.
https://doi.org/10.3390/catal6050061
[343] S. Banerjee, R. Kumar, I. Ansari, A. Mandal, and T. K. Naiya, “Effect of extracted natural surfactant on flow behaviour of heavy crude oil,” Int. J. Oil, Gas Coal Technol., vol. 13, no. 3, pp. 260–276, 2016.
https://doi.org/10.1504/IJOGCT.2016.079266
[345] R. Kumar, S. Banerjee, A. Mandal, and T. K. Naiya, “Flow improvement of heavy crude oil through pipelines using surfactant extracted from soapnuts,” J. Pet. Sci. Eng., vol. 152, pp. 353–360, 2017.
https://doi.org/10.1016/j.petrol.2017.02.010
[346] R. Kumar, G. S. Bora, S. Banerjee, A. Mandal, and T. K. Naiya, “Application of naturally extracted surfactant from Madhuca longifolia to improve the flow properties of heavy crude oil through horizontal pipeline,” J. Pet. Sci. Eng., vol. 168, pp. 178–189, 2018.
https://doi.org/10.1016/j.petrol.2017.12.096
[347] M. Gudala, S. Banerjee, A. Kumar, R. M. Rao T, A. Mandal, and T. K. Naiya, “Rheological modeling and drag reduction studies of Indian heavy crude oil in presence of novel surfactant,” Pet. Sci. Technol., vol. 35, no. 24, pp. 2287–2295, 2017.
https://doi.org/10.1080/10916466.2017.1402034
[348] M. Gudala, S. Banerjee, R. M. Rao T, T. K. Naiya, and A. Mandal, “The effect of a bio additive on the viscosity and the energy requirement on heavy crude oil flow,” Pet. Sci. Technol., vol. 36, no. 2, pp. 99–107, 2018.
https://doi.org/10.1080/10916466.2017.1405030
[350] H. Al-Adwani and A. Al-Mulla, “The analysis of drag reduction in Kuwaiti crude oil samples using surfactants and polyacrylamide,” J. Pet. Explor. Prod. Technol., vol. 9, pp. 2235–2245, 2019.
https://doi.org/10.1007/s13202-018-0590-9
[351] S. K. Al-Dawery and S. K. Al-Shereiqi, “Waste bio materials based viscosity reduction and rheological properties of crude oil,” J. Pet. Explor. Prod. Technol., vol. 9, pp. 2109–2121, 2019.
https://doi.org/10.1007/s13202-019-0612-2
[352] J. Gao, M. Hao, T. Wu, and Y. Li, “Efficient treatment of crude oil-contaminated hydrodesulphurization catalyst by using surfactant/solvent mixture,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105890, 2021.
https://doi.org/10.1016/j.jece.2021.105890
[353] D. Z. G. Rojas, N. V. G. Rivas, J. L. M. de la Cruz, B. A. S. Cruz, and U. P. García, “Effect of non-ionic surfactants on the transport properties of an emulsified heavy oil,” Fuel, vol. 300, p. 120934, 2021.
https://doi.org/10.1016/j.fuel.2021.120934
[355] Y. Zhao et al., “Fabrication of surfactant-biopolymer combined system with dual viscosity reduction and mobility controllability for heavy oil reservoirs,” J. Mol. Liq., vol. 368, p. 120777, 2022.
https://doi.org/10.1016/j.molliq.2022.120777
[356] M. Lam-Maldonado et al., “Extra heavy crude oil viscosity and surface tension behavior using a flow enhancer and water at different temperatures conditions,” Heliyon, vol. 9, no. 2, 2023.
https://doi.org/10.1016/j.heliyon.2022.e12120
[357] Y. Wang et al., “The structure effect on the physicochemical properties of Gemini surfactants used as viscosity reducer for heavy oil,” J. Mol. Liq., vol. 390, p. 123055, 2023.
https://doi.org/10.1016/j.molliq.2023.123055
[358] E. Hajibolouri, R. Najafi-Silab, A. Daryasafar, A. A. Tanha, and S. Kord, “Using data-driven models to simulate the performance of surfactants in reducing heavy oil viscosity,” Sci. Rep., vol. 14, no. 1, p. 27670, 2024.
https://doi.org/10.1038/s41598-024-79368-1
[359] W. Pu et al., “Emulsification and interfacial characteristics of different surfactants enhances heavy oil recovery: experimental evaluation and molecular dynamics simulation study,” J. Dispers. Sci. Technol., pp. 1–13, 2024.
https://doi.org/10.1080/01932691.2024.2416450
[360] T. Kholmurodov et al., “Innovative dual injection technique of nonionic surfactants and catalysts to enhance heavy oil conversion via aquathermolysis,” Fuel, vol. 366, p. 131274, 2024.
https://doi.org/10.1016/j.fuel.2024.131274
[361] X. Zhang, Y. Cao, D. Yang, W. Yang, B. Yan, and L. Zhang, “Thermally regulated flocculation-coalescence process by temperature-responsive cationic polymeric surfactant for enhanced crude oil-water separation,” J. Hazard. Mater., vol. 481, p. 136491, 2025.
https://doi.org/10.1016/j.jhazmat.2024.136491