2D-CFD Analysis of Diffusers used to Discharge Brine into Water Bodies

Document Type : Research Paper


1 UNESCO Chair on Water Reuse, College of Engineering, University of Tehran, Tehran, Iran.

2 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.


Inclined submerged diffusers that are used to dilute hypersaline and highly contaminated brine, discharged from desalination plants, in receiving marine waters are commonly modeled via semi-empirical, integral, and 3D Computational Fluid Dynamic (CFD) models. The first two models are computationally simple and efficient, but not enough accurate in many cases, and 3D-CFD models which show good agreement with experimental data are time-consuming. To avoid computational costs of 3D models and to present a more precise model than simple ones, a modified 2D-CFD model for stagnant and dynamic ambient is suggested in this study. The results showed that the proposed model can predict the jet behavior in both ambients more accurately than integral models and in shorter computing time than 3D models. The results of this study can be used in order to design environmentally friendly discharge systems by engineers and practitioners for brine or pollutant dilution in the receiving marine waters.


Main Subjects

Lykkebo Petersen, K., Heck, N., G Reguero, B., Potts, D., Hovagimian, A., Paytan, A.: Biological and physical effects of brine discharge from the Carlsbad desalination plant and implications for future desalination plant constructions. Water 11(2), 208 (2019). https://doi.org/10.3390/w11020208
Baum, M.J., Albert, S., Grinham, A., Gibbes, B.: Spatiotemporal influences of open-coastal forcing dynamics on a dense multiport diffuser outfall. Journal of Hydraulic Engineering 145(10), 05019004 (2019). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001622
Roberts, D.A., Johnston, E.L., Knott, N.A.: Impacts of desalination plant discharges on the marine environment: A critical review of published studies. Water research 44(18), 5117-5128 (2010). https://doi.org/10.1016/j.watres.2010.04.036
Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: water sources, technology, and today's challenges. Water research 43(9), 2317-2348 (2009). https://doi.org/10.1016/j.watres.2009.03.010
Baum, M., Gibbes, B.: Improved understanding of dense jet dynamics to guide management of desalination outfalls. In: Vol. 1 of Proc., MODSIM2017, 22nd Int. Congress on Modelling and Simulation Society of Australia and New Zealand, edited by G. Syme, D. Hatton MacDonald, B. Fulton, and J. Piantadosi, Hobart 2017, pp. 1711-1717. http://dx.doi.org/10.36334/modsim.2017.L11.baum
Rezaei-DashtArzhandi, M., Sarrafzadeh, M., Goh, P., Lau, W., Ismail, A., Mohamed, M.: Development of novel thin film nanocomposite forward osmosis membranes containing halloysite/graphitic carbon nitride nanoparticles towards enhanced desalination performance. Desalination 447, 18-28 (2018). https://doi.org/10.1016/j.desal.2018.08.003
Roy, A., Moulik, S., Kamesh, R., Mullick, A.: Modeling in Membranes and Membrane-Based Processes. Newark: John Wiley & Sons, Incorporated, 47-50 (2020). https://doi.org/10.1002/9781119536260
Jones, E., Qadir, M., van Vliet, M.T., Smakhtin, V., Kang, S.-m.: The state of desalination and brine production: A global outlook. Science of the Total Environment 657, 1343-1356 (2019). https://doi.org/10.1016/j.scitotenv.2018.12.076
Pramanik, B.K., Shu, L., Jegatheesan, V.: A review of the management and treatment of brine solutions. Environmental Science: Water Research & Technology 3(4), 625-658 (2017). https://doi.org/10.1039/c6ew00339g
Stefanakis, A.I., Becker, J.A.: A review of emerging contaminants in water: classification, sources, and potential risks. In: Impact of Water Pollution on Human Health and Environmental Sustainability. pp. 55-80. IGI Global, (2016). https://doi.org/10.4018/978-1-4666-9559-7.ch003
Frank, H., Fussmann, K.E., Rahav, E., Zeev, E.B.: Chronic effects of brine discharge form large-scale seawater reverse osmosis desalination facilities on benthic bacteria. Water research 151, 478-487 (2019). https://doi.org/10.1016/j.watres.2018.12.046
Ibrahim, H.D., Eltahir, E.A.: Impact of Brine Discharge from Seawater Desalination Plants on Persian/Arabian Gulf Salinity. Journal of Environmental Engineering 145(12), 04019084 (2019). https://doi.org/10.1061/(asce)ee.1943-7870.0001604
Gude, G.: Sustainable desalination handbook: plant selection, design and implementation. Butterworth-Heinemann, (2018). https://doi.org/10.1016/b978-0-12-809240-8.00001-0
Panagopoulos, A., Haralambous, K.-J., Loizidou, M.: Desalination brine disposal methods and treatment technologies-A review. Science of the Total Environment 693, 133545 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.351
Yan, X., Mohammadian, A.: Numerical modeling of multiple inclined dense jets discharged from moderately spaced ports. Water 11(10), 2077 (2019). https://doi.org/10.3390/w11102077
Zhang, S., Jiang, B., Law, A.W.-K., Zhao, B.: Large eddy simulations of 45 inclined dense jets. Environmental Fluid Mechanics 16(1), 101-121 (2016). https://doi.org/10.1007/s10652-015-9415-2
Zeitoun, M., Reid, R., McHilhenny, W., Mitchell, T.: Model studies of outfall system for desalination plants. Research and Development Progress Rep. 804, Office of Saline Water, U.S Washington, DC: Dept. of Interior (1970). https://doi.org/10.4043/1370-ms
Abessi, O., Roberts, P.J.: Effect of nozzle orientation on dense jets in stagnant environments. Journal of Hydraulic Engineering 141(8), 06015009 (2015). https://doi.org/10.1061/(asce)hy.1943-7900.0001032
Abessi, O., Roberts, P.J.: Dense jet discharges in shallow water. Journal of Hydraulic Engineering 142(1), 04015033 (2016). https://doi.org/10.1061/(asce)hy.1943-7900.0001057
Palomar, P., Lara, J., Losada, I., Rodrigo, M., Alvárez, A.: Near field brine discharge modelling part 1: Analysis of commercial tools. Desalination 290, 14-27 (2012). https://doi.org/10.1016/j.desal.2011.11.037
Palomar, P., Losada, I.J.: Impacts of brine discharge on the marine environment. Modelling as a predictive tool. Desalination, trends and technologies 234 (2011). https://doi.org/10.5772/14880
Sahlodin, A.M., Sotudeh-Gharebagh, R., Zhu, Y.: Modeling of dispersion near roadways based on the vehicle-induced turbulence concept. Atmospheric Environment 41(1), 92-102 (2007). https://doi.org/10.1016/j.atmosenv.2006.08.004
Witlox, H.W., Stene, J., Harper, M., Nilsen, S.H.: Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios. Energy Procedia 4, 2253-2260 (2011). https://doi.org/10.1016/j.egypro.2011.02.114
Kwak, K.-H., Baik, J.-J.: A CFD modeling study of the impacts of NOx and VOC emissions on reactive pollutant dispersion in and above a street canyon. Atmospheric environment 46, 71-80 (2012). https://doi.org/10.1016/j.atmosenv.2011.10.024
Gousseau, P., Blocken, B., Stathopoulos, T., Van Heijst, G.: CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmospheric Environment 45(2), 428-438 (2011). https://doi.org/10.1016/j.atmosenv.2010.09.065
Chow, M.M., Cardoso, S.S.S., Holford, J.M.: Dispersion of Pollutants Discharged into the Ocean: The Interaction of Small- and Large-scale Phenomena. Chemical Engineering Research and Design 82(6), 730-736 (2004). https://doi.org/10.1205/026387604774196019
Palomar, P., Lara, J., Losada, I.: Near field brine discharge modeling part 2: Validation of commercial tools. Desalination 290, 28-42 (2012). https://doi.org/10.1016/j.desal.2011.10.021
Vafeiadou, P., Papakonstantis, I., Christodoulou, G.: Numerical simulation of inclined negatively buoyant jets. In: The 9th international conference on environmental science and technology, September 2005, pp. 1-3 https://doi.org/10.1080/00221686.2010.537153
Oliver, C., Davidson, M., Nokes, R.: k-ε Predictions of the initial mixing of desalination discharges. Environmental Fluid Mechanics 8(5-6), 617 (2008). https://doi.org/10.1007/s10652-008-9108-1
Robinson, D., Wood, M., Piggott, M., Gorman, G.: CFD modelling of marine discharge mixing and dispersion. Journal of Applied Water Engineering and Research 4(2), 152-162 (2016). https://doi.org/10.1080/23249676.2015.1105157
Gildeh, H.K., Mohammadian, A., Nistor, I., Qiblawey, H.: Numerical modeling of 30 and 45∘ inclined dense turbulent jets in stationary ambient. Environmental Fluid Mechanics 15(3), 537-562 (2015). https://doi.org/10.1007/s10652-014-9372-1
Zhang, S., Law, A.W.-K., Jiang, M.: Large eddy simulations of 45 and 60 inclined dense jets with bottom impact. Journal of hydro-environment research 15, 54-66 (2017). https://doi.org/10.1016/j.jher.2017.02.001
Jiang, M., Law, A.W.-K., Lai, A.C.: Turbulence characteristics of 45 inclined dense jets. Environmental Fluid Mechanics 19(1), 27-54 (2019). https://doi.org/10.1007/s10652-018-9614-8
Ardalan, H., Vafaei, F.: CFD and Experimental Study of 45 Inclined Thermal-Saline Reversible Buoyant Jets in Stationary Ambient. Environmental Processes 6(1), 219-239 (2019). https://doi.org/10.1007/s40710-019-00356-z
Baum, M.J., Gibbes, B.: Field-Scale Numerical Modeling of a Dense Multiport Diffuser Outfall in Crossflow. Journal of Hydraulic Engineering 146(1), 05019006 (2020). https://doi.org/10.1061/(asce)hy.1943-7900.0001635
Al-Sanea, S., Orfi, J., Najib, A.: Numerical study of flow, temperature, and salinity distributions of a brine discharge problem. Desalination and Water Treatment 55(12), 3218-3230 (2015). https://doi.org/10.1080/19443994.2014.940658
Ardalan, H., Vafaei, F.: Hydrodynamic classification of submerged Thermal-Saline Inclined Single-Port discharges. Marine Pollution Bulletin 130, 299-306 (2018). https://doi.org/10.1016/j.marpolbul.2018.03.052
Roberts, P.J., Ferrier, A., Daviero, G.: Mixing in inclined dense jets. Journal of Hydraulic Engineering 123(8), 693-699 (1997). https://doi.org/10.1061/(asce)0733-9429(1997)123:8(693)
List, E., Koh, R.C., Imberger, J.: Mixing in inland and coastal waters. Academic Press, (1979). https://doi.org/10.1016/c2009-0-22051-4
Roberts, P.J., Toms, G.: Inclined dense jets in flowing current. Journal of Hydraulic Engineering 113(3), 323-340 (1987). https://doi.org/10.1061/(asce)0733-9429(1987)113:3(323)
Abessi, O., Roberts, P.J.: Multiport diffusers for dense discharges. Journal of Hydraulic Engineering 140(8), 04014032 (2014). https://doi.org/10.1061/(asce)hy.1943-7900.0000882
Abessi, O., Roberts, P.J.: Multiport diffusers for dense discharge in flowing ambient water. Journal of Hydraulic Engineering 143(6), 04017003 (2017). https://doi.org/10.1061/(asce)hy.1943-7900.0001279
Manninen, M., Taivassalo, V., Kallio, S.: On the mixture model for multiphase flow. In. Technical Research Centre of Finland Finland, (1996)
Xue, W., Huai, W., Qian, Z., Yang, Z., Zeng, Y.: Numerical simulation of initial mixing of marine wastewater discharge from multiport diffusers. Engineering Computations 31(7), 1379-1400 (2014). https://doi.org/10.1108/ec-06-2013-0148
Schiller, L.: A drag coefficient correlation. Zeit. Ver. Deutsch. Ing. 77, 318-320 (1933).
Morsi, S., Alexander, A.: An investigation of particle trajectories in two-phase flow systems. Journal of Fluid mechanics 55(2), 193-208 (1972). https://doi.org/10.1017/s0022112072001806
Fluent, A.: 18.1, Theory Guide, Ansys. In. Inc, (2017)
Seil, G., Zhang, Q.: CFD modeling of desalination plant brine discharge systems. J. Aust. Water Assoc 37(6), 79-83 (2010).
Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal 32(8), 1598-1605 (1994). https://doi.org/10.2514/3.12149
Patankar, S.V.: Numerical heat transfer and fluid flow, Hemisphere Publ. Corp., New York 58 (1980). https://doi.org/10.1002/cite.330530323
Cipollina, A., Brucato, A., Grisafi, F., Nicosia, S.: Bench-scale investigation of inclined dense jets. Journal of Hydraulic Engineering 131(11), 1017-1022 (2005). https://doi.org/10.1061/(asce)0733-9429(2005)131:11(1017)
Kikkert, G., Davidson, M., Nokes, R.: Inclined negatively buoyant discharges. Journal of Hydraulic Engineering 133(5), 545-554 (2007). https://doi.org/10.1061/(asce)0733-9429(2007)133:5(545)
Papakonstantis, I.G., Christodoulou, G.C., Papanicolaou, P.N.: Inclined negatively buoyant jets 2: concentration measurements. Journal of Hydraulic Research 49(1), 13-22 (2011). https://doi.org/10.1080/00221686.2010.542617
Papakonstantis, I.G., Christodoulou, G.C., Papanicolaou, P.N.: Inclined negatively buoyant jets 1: geometrical characteristics. Journal of Hydraulic Research 49(1), 3-12 (2011). https://doi.org/10.1080/00221686.2010.537153
Shao, D., Law, A.: Integral modelling of horizontal buoyant jets with asymmetrical cross sections. In: Proceedings of the 7th International Symposium on Environmental Hydraulics 2014
Dissanayake, A.L., Gros, J., Socolofsky, S.A.: Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow. Environmental Fluid Mechanics 18(5), 1167-1202 (2018). https://doi.org/10.1007/s10652-018-9591-y